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ABSTRACT

CELLULAR SHEAVES OF HILBERT SPACES
Julian Joseph Gould
Robert Ghrist

This dissertation extends the theory of cellular sheaves from finite-dimensional to infinite-
dimensional Hilbert spaces, thereby broadening the scope of cellular sheaf theory through the
incorporation of functional and non-smooth analytic techniques. While classical cellular sheaves,
particularly weighted cellular sheaves valued in finite-dimensional Hilbert spaces, have found
applications in network analysis, opinion dynamics, and neural networks, some applications
naturally require sheaves valued in infinite-dimensional spaces.

The passage from finite to infinite dimensions introduces fundamental complications that ne-
cessitate careful theoretical development. When restriction maps are unbounded operators with
partial domains, the composition of morphisms requires precise domain considerations, cochain
complexes may fail to satisfy the standard hypotheses for cohomology theory, and even elemen-
tary sheaf operations become problematic. This work systematically addresses these challenges
through a trio of technical tools: the restriction categories of Cockett and Lack [26], the formalism
of Hilbert complexes as developed by Briining and Lesch [17], and the analysis of block operators
between direct sums of Hilbert spaces.

The central construction of this thesis is the Hilbert sheaf. Pre-Hilbert sheaves are introduced
as functors from combinatorially well-behaved acyclic categories to the category of Hilbert spaces
and unbounded operators. While these objects generalize weighted cellular sheaves directly, they
may exhibit pathological behavior. The dissertation therefore identifies necessary conditions for
well-behaved objects, leading to the definition of Hilbert sheaves proper. A Hilbert sheaf is a
pre-Hilbert sheaf whose associated coboundary operators are closable, ensuring the formation of
genuine Hilbert complexes.

The theoretical framework encompasses several key developments. First, it establishes condi-
tions under which Hilbert sheaves admit meaningful cohomology groups and spectral theory.
Second, it identifies distinguished classes including bounded Hilbert sheaves (where all restric-
tion maps are bounded) and closed Hilbert sheaves (where coboundary operators have closed
range), each possessing favorable computational and theoretical properties. Third, it develops
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dynamical systems on these sheaves, including heat flows, wave propagation, and nonlinear dif-
fusion processes, which serve as tools for the study of consensus problems.

This work establishes cellular sheaves of Hilbert spaces as a rigorous mathematical framework
in the intersection of algebraic topology, functional analysis, and applied mathematics, opening

new avenues for the analysis of complex systems with infinite-dimensional local structure.
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PRELIMINARIES



CELLULAR SHEAVES

This introductory chapter serves two distinct purposes. First, we review the established theory of
cellular sheaves and their cohomology, following the work of Shepard [112] and Curry [33]. Sec-
ond, we simultaneously extend this technology from the traditional setting of partially ordered
sets to the more general setting of graded acyclic categories (GACs). This generalization enables
a systematic treatment of network sheaves on graphs with self-loops and, more broadly, allows
us to track not just that cells are glued together, but how they are glued.

Section 1.1 introduces acyclic categories—posets that permit multiple morphisms between ob-
jects while maintaining acyclicity. When equipped with a grading, these GACs provide the ap-
propriate domain for cellular sheaves that admit cohomology and spectral theory. Section 1.2
shows how GACs arise from cell complexes, introducing weakly-regular cell structures and es-
tablishing an isomorphism between face categories and discrete exit path categories. A suitable
generalization of signed incidence relations from posets to GACs is given by assigning parities
to morphisms rather than object pairs. This structure enables the alternating signs necessary
for cohomological cancellations while accommodating multiple parallel morphisms. With these
foundations, Section 1.4 defines cellular sheaves as functors J : P — D from a graded acyclic cate-
gory P with a signed incidence structure to a data category D. The grading and signed incidence
combine to yield coboundary operators whose composition vanishes, producing well-defined
cohomology groups that are invariant under different choices of signed incidence structure.

1.1 ACYCLIC CATEGORIES

An acyclic category P can be viewed as a "poset with extra arrows." Like a partially ordered set, it
has no non-trivial end-to-end loops: every endomorphism f : x — x is the identity. Unlike a poset,
however, the homset P(x,y) may contain multiple distinct morphisms, and composable chains
may merge and branch. This added flexibility makes acyclic categories a natural language for
encoding nonbinary incidence data. When gluing objects with an ambient notion of dimension,
such as cells of a CW complex, the resulting acyclic category can be graded, assigning a rank to
every object capturing how far up the chain of the category the object lives. For a comprehensive
introduction to acyclic categories, see [75, Chapter 10].



Definition 1.1.1 (Acyclic category [75]). A category A is acyclic if it satisfies the following condi-

tions:
(i) A(X,X) = {idx} for every object X.
(ii) If f : x — y is an isomorphism, then y = x and f = idy.

A morphism f : x — y in an acyclic category A is indecomposable if f cannot be written as a
composition of two non-identity morphisms.

Acyclic categories may be thought of as an ordered structure that mildly generalize partially
ordered sets (posets). Every poset (P, <) can be viewed as a (small) acyclic P with objects Ob(P) =
P and morphisms:

P(x,y) contains a unique morphism <= x <y.

A general acyclic category A allows for distinct parallel morphisms between a pair of objects. One
may think of A as a poset that allows for multiple distinct witnesses of x < y. Or equivalently, a
poset in which one object can be greater than another in multiple ways. Each acyclic category A

has an underlying poset structure defined by
x <y <= A(x,y) is inhabited.

Equivalently, one may make a choice of a thin, wide subcategory of A to find a categorical rep-
resentation of the underlying poset. Hence to say that x < y in an acyclic category asserts the
existence of a morphism x — y, but does not give any information about how many distinct
morphisms live in A(x,y), nor how they compose with other morphisms. In the interest of pre-
serving the intuition of an acyclic category as a generalization of a poset, we will regularly use P
to refer to an acyclic category.

To further borrow from the language of posets, we say that y covers x in an acyclic category P,
written x <7 y, if y covers x in the underlying poset. That is, x <1 y if and only if x < y and there
is no point z such that x < z < y. When y covers x, we call each morphism in P(x,y) a covering
morphism. As a shorthand, when f : x — y is a covering morphism, we will write f € (x <1 y). It
is clear that every covering morphism is indecomposable, but the converse need not be true.

We may form a category AcycCat of small acyclic categories whose objects are acyclic categories

and whose morphisms are functors.

Definition 1.1.2. Let AcycCat be a category consisting of the following data.
¢ Objects. An object of AcycCat is a small acyclic category P.
* Morphisms. A morphism f: P — Q is a functor.

Equivalently, AcycCat is the full subcategory of Cat whose objects are acyclic.



1.1.1  Graded acyclic categories

Arbitrary acyclic categories are insufficiently structured for the theory of cellular sheaves. The
underlying poset of an acyclic category may contain densely ordered segments such as those
found in Q and R, or have limit points like the ordinal w + 1. Such partial orders lack the
combinatorial structure required for the algebraic topology we wish to capture. We will stipulate
that our acyclic categories come equipped with a certain combinatorial map, called a grading.
Our definition directly generalizes that of a graded poset.

Let (IN, <) denote the natural numbers equipped with their usual ordering. This is a poset,

and hence an acyclic category.

Definition 1.1.3 (Graded acyclic category). Let P be an acyclic category. A grading on P is a
functor v : P — (IN, <) that satisfies the following conditions.

(i) If Uyer P(y,x) = {idx}, then v(x) = 0.
(ii) If y covers x in P, then r(y) = r(x) + 1.

The value r(x) € N is the rank, grade, or dimension of x, and the pair (P,r) a graded acyclic
category (GACQ).

An acyclic category admits at most one grading; when a grading exists on P, it can be con-
structed inductively by first assigning rank 0 to each object x with [ J,cp P(y,x) = {idy}, and
assigning r(y) = n + 1 if and only if y covers an object of rank n. When the grading is clear from
context, we will conflate a GAC (P, r) with its underlying acyclic category P.

Notation 1.1.4. When x < y in a GAC and r(y) = r(x) + k for a given k > 0, we write x <k y.
Moreover, for f : x — y with x <y y, we adopt the shorthand Cov (f) for the collection of sequences

of composable covering morphisms (fy,...,fi) such that fy o---ofy = f.
Example 1.1.5. The following are examples of graded acyclic categories:
1. Any graded poset is a graded acyclic category.

2. Specifically, any finite distributive lattice is graded by its height function h : P — IN that
sends an element x € P to the length of the longest increasing chain xp < x1 < -+ £ x.
However, not all finite posets are graded. Consider the pentagonal lattice N5, consisting of
five elements {1, a,b,c, T} ordered such that L. < a <b < Tand L <c < T, butcis
incomparable to a and b. This lattice cannot be graded, as the (a, b)-half of the pentagon
yields r(T) = r(L) + 3, while the c-half yields r(T) = r(L) + 2.



3. The natural numbers with their usual ordering are graded by the identity map. Indeed, this
is the only infinite graded total order up to isomorphism.

4. A quiver is a multi-graph with directed edges (self loops allowed). To each quiver Q =
(V,€), we may construct a free category, whose objects are exactly the vertices V, with a
morphism v — w for each path from v to w along edges in the quiver. This construction
induces a functor

Free : Quiv — Cat.

Call a quiver acyclic if there is no non-trivial path v ~» v for any vertex v. The free category
Free(Q) is an acyclic category if and only if the quiver Q is acyclic. Moreover, Free(Q) is a
non-empty GAC if and only if the following conditions hold.

(i) There is at least one minimal vertex with no incoming edges.

(ii) For every vertex v, every path m ~» v where m is a minimal vertex has the same
length.

The rank r(v) is exactly the unique path length from a minimal vertex.

5. Given two graded acyclic categories (P, 1) and (Q, s), the product category P x Q inherits a
grading by (p, q) — r(p) + s(q). In the event that P and Q are graded posets, the resulting
order and grading correspond to that of the Pareto order (p, q) <pxo (p’, q’) if and only if
p<pp’and q<qq’ onP x Q.

6. The face poset Fc(G) of a regular cell complex G is graded by the dimensions of the faces
(Section 1.2).

Definition 1.1.6. Let (P, 1) be a graded acyclic category. P is levelwise-finite if, for every n € N,
there are finitely many objects x € P such that r(x) = n, and for each pair of objects x,y € P, the
homset P(x,y) is finite.

1.1.2  Morphisms of GACs

Let (P,7v) and (Q,s) be graded acyclic categories. While every functor ¢ : P — Q defines a
morphism of acyclic categories, such a natural transformation need not respect the gradings of
P and Q. There are a few important classes of grade-respecting maps for the theory of cellular
sheaves.

Notation 1.1.7. Let P be an acyclic category. For an object x € P, we let (| x) denote the down-set

of x, consisting of the full subcategory of P containing all y € P such that y < x in the underlying



poset. Similarly, we let st(x) denote the star of x, consisting of the full subcategory of P containing
all objects y > x above x in the underlying poset structure.

Definition 1.1.8. Let (?,1) and (Q,s) be GACs. A functor ¢ : P — Q is a cellular map if the
following conditions hold for all objects o € P.

(i) s(d(0)) <7(0).
(i) {¢(y) : ye(l 0)} = d(0)).
Definition 1.1.9. Let ¢ : (P, 1) — (Q, s) be a cellular map.
¢ ¢ is a cellular homeomorphism if ¢ is an isomorphism of categories.
* ¢ is an inclusion if ¢ is injective (on both objects and hom-sets).

* ¢ is a covering map if for each object y € Q, the pre-image of the star ¢~ (st(y)) is a disjoint
union of isomorphic copies of st(y), each of which is mapped isomorphically onto st(y) by

.

"on

Remark 1.1.10. The nomenclature of "cellular," "covering," and "homeomorphism" are meant to

evoke the similar concepts for cellular structures (Definition 1.2.17).

1.2 CELL COMPLEXES

Acyclic categories are readily found in the theory of cell complexes and stratified spaces, through
the identification of cells with objects and gluing data with morphisms. Such acyclic categories,
subject to additional regularity constraints, serve as a fruitful setting for the theory of cellular
sheaves. In the literature on cellular sheaves, it is common to use the face poset of a regular cell
complex or a simplicial complex as the domain for a functor [33, 45, 54, 102]. We briefly review
these concepts, as well as introduce new a class of cellular decompositions, akin to regular cell
structures, that generate a suitable graded acyclic category for the theory of cellular sheaves.

1.2.1  Regqular cell complexes

Let D™ and D™ denote the open and closed balls of dimension n respectively for n > 1. We
adopt the convention that D® = DO is the one-point space.

Definition 1.2.1 (Regular cell structure). Let X be a Hausdorff space. A regular cell structure on
X consists of the following data.



* A partition of X into disjoint open cells { X, : « € Px }, each endowed with a dimension
dy € IN.

* For every cell X, a continuous attaching map ¢«: D d« — X, where X is the closure of
Xy in X,

These data must satisfy the following axioms.

(i) Locally finite. Every point of X has a neighborhood that meets only finitely many cells.

(ii) Frontier. If X, n X # @ then Xp S Xq.

~

(iii) Homeomorphic attaching maps. Each ¢ is a homeomorphism of pairs (D d«, D dx) =

(X«, X«), i-e. it is a homeomorphism D d« >~ X, whose restriction to the open ball is the

homeomorphism D 4« ~ X, specified above.

Notation 1.2.2. A regular cell structure for a topological space X refers to the full the collection
(Xas ) xepy Of cells and attaching maps. We will often adopt the shorthand X = (X«, &) aepy/
and utilize the notation |X| for the underlying topological space. A cell X, will often be identified
with its index « € Px.

While this definition of a regular cell complex, due to MacPherson [85] and transmitted
through Curry [33], is somewhat non-standard, the attaching maps and cells are equivalent to
those of a locally-finite regular CW complex—a locally-finite CW complex whose attaching maps

are homeomorphisms.

Proposition 1.2.3. Let X be a Hausdorff space. The data of a regular cell structure (X, o) xepy for X is
equivalent to the data of a locally-finite reqular CW-structure for X.

Proof. Tt is straightforward to check that a locally-finite regular CW structure defines the data of a
regular cell complex. Conversely, suppose that X = | Jyep, X« is a regular cell complex structure
with attaching maps ¢« : Dd« — X. By [57, Proposition A.2], to confirm that these maps define

a CW-structure for X, we must verify the following conditions.

1. Bach ¢ restricts to a homeomorphism from D9« onto its image, these images are all

distinct as we vary « € Px, and their union is X.

2. For each «, the image ¢«(0D%«) is contained in the union of a finite number of cells of

dimension less than d.

3. X is topologized in the weak topology with respect to its cells. That is, a subset A < X is

closed if and only if A N X is closed for each « € Px.



Condition 1 is immediate from the definition of a cell complex. Condition 2 is also follows
straightforwardly from the frontier condition and local finiteness.

Condition 3, which says that X is topologized with the weak topology, is only slightly more
complicated to check. If A < X is closed in X, then A n X is closed by definition. Conversely,
suppose that A n X, is closed in X for each o € Px. For a point x € X\A, we may take a
neighborhood U, that intersects finitely many cells Xq,,..., Xy, of X. In each cell Xa;, since
A N Xg; is closed in X;, we may take an open set Vj < X such that V; n A n Xy, is empty. Taking

the intersection

gives a new open set in X, which contains x and is contained in X\A. Hence we may write X\A
as the union (J, Wy, proving that A is closed, and that X is a regular CW complex. ]

Given a cell structure X with cells {X« : « € Px}, the structure of the decomposition of X into
cells induces a poset structure (and hence an acyclic category structure) on the index set Px. For
indices «, 3 € P, the ordering is given by:

a< B = Xy < Xp.

The frontier condition ensures that this is a partial order structure. We call this order structure
(Px, <) the face incidence poset (or simply the face poset) of X. In this poset structure, when
o < 3 and there is no cell x <y < 3, we say that 3 covers o.

Remark 1.2.4. Regular cell complexes are less prevalent in algebraic topology than the usual
CW complexes. The main practical difference is that regular cell complexes are more rigid and
structured, giving the cellular decomposition an extremely well-behaved combinatorial flavor. If
we build out attaching maps, the cells attach to each other in a clean way, with no "pinching" or
"folding" allowed. This makes them easier to work with computationally and more suitable for
certain applications. We catalog a few of these useful structural properties here. Given a regular
cell complex X with face poset P, the following hold.

1. Px is naturally graded by the dimensions of the underlying cells. One may check that
for any cell X, of dimension n + 1, the frontier condition enforces that the image of the
boundary /D%« under the attaching map ¢4 is a union of closures of cells of dimension n.
Moreover, there can only be finitely many cells in this image by local finiteness.



2. Px has the diamond property’; every closed interval of length 2 in Px has exactly four
elements. That is, if @ <1; vy in Px, then there are exactly two distinct elements 31,3, € Px
such that o« < 35 < y.

3. The work of Bjorner [12], as well as Danaraj and Klee [35], allows face posets of regular
cell structures to be directly identified directly from their poset structure. In particular,
given a poset P, if after attaching a bottom element L, P U {_} is both thin and shellable—
a technical condition that captures some of the global gluing properties of regular cell
complexes, like how k-cells can always be thought of as being glued to (k — 1)-cells.

4. The topological space |X| can be reconstructed (up to homeomorphism) from its face poset.
Hence, we may safely conflate a regular cell complex with it face poset. See [52, Proposition
1.1.1] for details.

Regular cell maps also come equipped with a class of combinatorially well-behaved maps

between them.

Definition 1.2.5 (Regular cell map). Let {Xy}«ep, and {Yp}gep, be regular cell complexes. A
regular cell map is a continuous map f : |X| — |Y| such that the following conditions hold.

(i) Each cell X of X is mapped by f surjectively onto a cell Yg of Y, with dim(Xy) > dim(Yp).

(ii) The restriction f ‘th : Xo — Yp factors as

Xo —= RIMXe) Py Ram(Yp) =, y,

where P is an orthogonal projection map.

If a regular cell map f is a homeomorphism, it restricts to a cell-wise homeomorphism. We call

such a map a regular cell homeomorphism.

Each regular cell map f: X — Y induces a poset map Px — Py via o — f3 if and only if f maps
X« onto Yg. However, not every poset map arises from a regular cell map. For more details on
regular cell complexes, their properties, and maps between them, see [29, 43].

1.2.2  Weakly-regular cell structures

There are many topological spaces with natural cell structures that are not regular. For example,
consider the usual decomposition of the torus and the Klein bottle, as shown in Figure 1, as cell

1 Such a poset is commonly referred to as thin in the literature [59] [60] (dating back to Bjorner [12]), but we use the
term "diamond property" to disambiguate from the notion of a thin category [126].



structures with a single vertex, two edges, and one face. These are not regular cell structures as
the 2-cells are not glued homeomorphically along their boundary. While these spaces do admit
regular cell structures, they require more cells. Nonetheless, these cell structures fit into a more
general schema of weakly-regular cell structures, obtained by weakening the requirement of

attaching maps being homeomorphisms on their boundaries.

Figure 1: Non-regular cell structures for the torus (left) and Klein bottle (right)

NN NN
[ 27 ] [ > ']
/N /N N N
NN 4
o > o o <K ®

Definition 1.2.6 (Weakly-regular cell structure). Let X be a Hausdorff space. A weakly-regular
cell structure on X consists of the following data.

¢ A partition of X into disjoint cells { Xy : o € Px }, each endowed with a dimension d € IN.

e For each cell X, a regular cell decomposition K« of the closed ball D d« containing a single
cell of top dimension d.

¢ For each cell X, a continuous attaching map

d)oc:Dd"‘_’Xioc

that maps the interior D4« (the unique cell of dimension d« in K «) homeomorphically onto
X«

These data must satisfy the following axioms.

(i) Locally finite. Every point of X has a neighborhood that meets only finitely many cells.
(ii) Frontier. If Xy n Xp # @ then Xp < Xq.

(iif) Cell-wise homeomorphism. For every cell 0 € Ky the restriction d)o(jc: o — Xp is a

homeomorphism onto a unique cell Xg of the same dimension as o.
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Remark 1.2.7. The cell-wise homeomorphism condition (plus the axiom of the frontier) ensures
that the attaching map ¢« attaches X, along the closures of cells of dimension dy — 1, albeit
not necessarily homeomorphically. This will preserve the graded structure of face poset while

allowing for more general attaching maps.

Remark 1.2.8. This notion of a weakly-regular cell complex is similar to, but distinct from that
of a semi-regular CW-complex [67]. There is a different generalization of regular cell structures
given in the work of Shepard [112] and Curry [33]. These authors instead define a cell complex
by replacing Part iii in the definition of a regular cell complex with the requirement that the cells
{X« @ o€ Px}u {0} are the cells of a regular cell complex structure for the one-point compact-
ification of X. There is no containment relationship between weakly-regular cell complexes and
the cell complexes of Curry and Shepard.

Notation 1.2.9. Let X« be the regular cell structure for a closed dy-ball in a weakly-regular cell
structure. We let 0K, denote the collection of cells in K that make up the boundary dDd«. 0K
contains every cell of X, except for the unique top-dimensional cell. For a cell 0 € 0K, we

further denote the collection of cells T # o such that T = © by do.

Example 1.2.10. Every regular cell structure is a weakly-regular cell structure. In particular, for
each cell X, the regular cell structure 0K« for the boundary 0D d« may be found by identifying
K with the cells of X in the image ¢« (éD4x). The converse is not true, as shown in the next

example.

Example 1.2.11. Consider the usual CW-structure for the circle S' with one o-cell and one 1-cell.

A

This is not a regular cell structure, as the boundary of the unique 1-cell is not glued homeomor-
phically. It also fails to be a cell complex in the sense of Shepard, as the one-point compactification
adds a disjoint point and fails to fix the irregularity. However, when we decompose the boundary
of the 1-cell as a pair of o-cells, we see that this is a weakly-regular cell structure. On the other
hand, the usual CW-structure for the n-sphere with one o-cell and one n-cell for n > 2 fails to be

a weakly regular cell complex.

While weakly-regular cell structures are more flexible than regular cell structures, they are no

more general topologically.

Proposition 1.2.12. Let X be a Hausdorff space. If X admits a weakly-reqular cell structure, it admits a

cell regular structure.
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Proof. Let (X«, o, K )xepy be a weakly-regular cell structure on X. We may refine this weakly-
regular cell structure to a regular cell structure as follows. For each index o € Px, take O« to be

a new o-cell at the center of D4, and for each ¢ € 0K, a (dim(o) + 1)-cell:
Yoo ={tx+(1-1t)0q : xeo,te(0,1)}.

The collection 0Ky U {O«} U {Ys,o : 0 € 0Ky} is a regular cell structure for the close ball Dd«.
Removing the boundary cells 0K similarly gives a regular cell structure for the open ball. Let
Oy == d«(0x), and \A(ow = Ox(Ya,o). We claim that the cells

U ({0a} U {Yao : 0€0Ka}),

OCEPX

with attaching maps given by restricting the attaching maps for X, form a regular cell structure
for X. We check the axioms.

(i) Locally finite. Let x € X. There is a neighborhood U s x that intersects only finitely many
cells X. Since the boundary of the d4-ball is compact, K has only finitely many cells, and

U can only intersect finitely many Yq,o. Hence the new structure is locally finite.

(ii) Frontier. This follows from the fact that the axiom of the frontier was satisfied in the original

decomposition X, as well as in the regular cell-decompositions of the closed ball Dd«.

(iii) Homeomorphic attaching maps. For each cell Y, o, the attaching map V4, is given by

Yoo where we have identified the open ball DIMVeo) with Yo itself.

G« 0 is hence a homeomorphism of Yy, onto VCX,U by definition. Moreover, the boundary

the restriction d)a’

of Yy o inside of Dd« consists of the cell 0 € 0Ky, O, and cells of the form Y, where
T < 0 in Xy. Every cell other than o is mapped homeomorphically into X, < X, and
o is mapped homeomorphically onto its image by the definition of a weakly-regular cell

complex. Therefore 1, is a homeomorphism of pairs, as required.

O]

The cell-wise homeomorphism condition imposes a strict combinatorial structure on the closed-

ball decompositions {K«}«ep,. The crux of the combinatorial structure is the following lemma.

Lemma 1.2.13. Let X be a cell in a weakly reqular cell structure with attaching map ¢4 : D3« — Xq.
Let $go = d)(x‘Ddrx denote the restriction of ¢« to the interior of the ball. The cell structure K can be
determined from ¢ .

12



Proof. For each point x € dD4%, fix a path vy : [0,1) — D4« such that lim;_,7 yx(t) = x. The
induced path oo Yx in X« has a limit in X. For a boundary-cell X; < Xy, set:

S = {x e oD% : PE} ba(vx(t)) € Xe}.

Since ¢ is a surjection, S is non-empty. Moreover, since ¢ « is the restriction of a cell-wise home-
omorphism, S; € D% can be decomposed into path-connected components, each of which is
homeomorphic to X;. Each connected component Y < S is a cell in X4. By a direct inductive

argument on cell-dimension, the attaching map 1\ : D4« — Y can be determined as well. O

This lemma essentially enforces a weak uniqueness condition on weakly-regular cell structures.
Given a cell X, in a weakly-regular cell structure, we cannot change the boundary-decomposition
X« without also changing the interior of the attaching map ¢ . This forces the following combi-

natorial corollary.

Corollary 1.2.14. Let (X, G, K)xepy be a weakly-regqular cell structure. Let 0K denote the cells
of Ko making up the boundary of the sphere 0D4«. Let 0 € 0K be a boundary cell, and suppose o is

mapped homeomorphically onto the cell X1 by ¢ «. The closure 6 < dD 9« inherits a reqular cell structure
from 0K «, denoted K. Moreover, the restriction cl)(x‘ﬁ 10— X¢ factors as

s b, Do

o L
Xp

o

where \p is a reqular cell homeomorphism from the cell structure on G inherited from X, and D% has
the cell structure of X g. Moreover, any such regular cell homeomorphism induces the same correspondence
at the level of cells.

Suppose we have a trio of cells X, Xg, Xy such that X, < 0Xp and Xg < 0X,.Let 0 € 0Xg be a
cell mapped homeomorphically by ¢ g onto X, and T € 0K, be a cell mapped homeomorphically

by ¢ onto Xg. By Corollary 1.2.14, there a regular cell-homeomorphism { : T — (D46, Kp). Let
p := P~ (o) denote the unique cell in T that is mapped homeomorphically onto o by 1. We call
this cell p, which is homeomorphic to X, the cell in T over o.

1.2.2.1  Maps of weakly-reqular cell complexes

We may generalize regular cell maps to act between weakly regular cell complexes.

13



Definition 1.2.15. Let (X, o, K)xery and (Yp, Vg, dp ) ger, be weakly-regular cell structures. A
weakly-regular cell map is a continuous function f : |X| — |Y| such that the following conditions
hold.

(i) Each cell X« of X is mapped by f surjectively onto a cell Yg of Y, with dim(Xy) > dim(Yp).

(ii) There is a regular cell map fyp : D4« — D96 such that the following diagram commutes:

d)ocl lwﬁ
Xa —— Y5
f

Xoo

Weakly-regular cell maps have the following combinatorial property.

Proposition 1.2.16. Suppose f : |X| — |Y| is a weakly regular cell map. If f maps X surjectively onto
Yg, then f(icx) = YB‘

Proof. When f is a regular cell map of regular cell complexes, f has the desired property [52,
Proposition 1.1.3]. Therefore f, 3 maps D4« surjectively onto D9, and f(X«) = Yp. O

There are several classes of weakly-regular cell maps that will prove important for sheaf oper-
ations on Hilbert spaces. We outline them here.

Definition 1.2.17. Let f: (X«, b, Ko )aePx — (Yp, Vg, dp)pep, be a weakly regular cell map.

e f is a homeomorphism if the underlying map of topological spaces f : |X| — |Y| is a
homeomorphism. Such a map is necessarily a cell-wise homeomorphism.

¢ fis an inclusion if f : |X| — |Y| is injective. Such a map is necessarily injective on the cells
of X.

e For a cell € Py, let the star of 3, denoted st(f3), denote the collection of all cells Y, of
Y for which Y is a face. The map f is a covering map if for each cell 3, the preimage
f~1(st(B)) is a disjoint union of homeomorphic copies of st(B), each of which is mapped
homeomorphically onto st(f3) by f.

Remark 1.2.18. Each weakly-regular cellular map (resp. homeomorphism / injection / covering
map) f : |X| — |Y| functorially induces a cellular map (resp. homeomorphism / injection /
covering map) Fc(f) : Fe(X) — Fe(Y).

14



1.2.2.2 Face categories

There are multiple ways to associate an order structure to the cells of a weakly-regular cell struc-
ture X. First, one can form the usual face poset, where « < p if and only if X, = Xp. However,
this structure no longer uniquely specifies the topological space |X| up to homeomorphism. As a
simple example, consider the following poset, with height corresponding to cell-dimension.

2

N
[

While the poset specifies that the o-cells and 1-cells are glued into a circle with two arcs, the

o —3 =

gluing of the 2-cell is ambiguous. The 2-cell could be glued so as to form a disk, or it could be
glued so as to wrap around the boundary circle n times for any n > 2. This generates an infinite
family of non-homeomorphic topological spaces, each with the same face poset.

The essential problem captured by the previous example is that while the face poset can capture
when one cell of X is part of the boundary of another, it fails to capture the multiplicity. The face
poset cannot see how a cell Xg is included as part of the image of the attaching map ¢«. To
capture non-boolean gluing data, we may instead associate the structure of an acyclic category
to the cell structure, with parallel morphisms capturing the multiplicity of the inclusion of a cell
in the boundary of another, and the compositional structure capturing the orientations. The key
to the construction is the boundary compatibility imposed by Corollary 1.2.14.

Definition 1.2.19 (Face category). Let (Xu, d«, K«)xepy be a weakly-regular cell structure for a
Hausdorff space X. The associated face category Fc(X) consists of the following data.

* Objects. Each index « € Px is an object of Fc(X).

* Morphisms. For each «, the identity id is the unique morphism in Fc(X)(«, ). For « # §3,
there is a unique morphism in Fc(X)(c, ) for every cell o in the boundary decomposition
0Xp that maps homeomorphically onto X. Equivalently,

Fe(X)(«, B) = {connected components of CPB] (X«) in 0D9s }.

¢ Composition. Identity maps are formal and compose in the necessary way. Given a pair of
composable morphisms & 2 B 5 vy for distinct o, B, v, the composition T o ¢ is defined to
be the cell p € 0T over o € 0Kp, as guaranteed by Corollary 1.2.14.
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¢ Associativity. Consider a sequence of composable morphisms
Xa 5 Xp 5 Xy 5 X,

and pick regular cellular homeomorphisms ¥ : T = Kg, and P, : p = Ky, and Wpor
poT — K from Corollary 1.2.14. It is straightforwardly verified that the following diagram
commutes

poT 1Ppo-r KB

N e

poT f

where we have identified D¢ with its regular cell structure K. It follows that (poT) oo =
p o (To o), verifying associativity.

Example 1.2.20. We return to the torus and the Klein bottle, each parameterized with one vertex,
two edges, and a single face, as shown in Figure 2.

Figure 2: Non-regular cell structures for the torus (left) and Klein bottle (right)

v & ey NS <,

4
W /J,/ p/,},l’n R.L\, T 2| VR

w E w E
e/N? £ e e/N? £ </\eg
7
5 5 1‘5

R

.E:. eg, (‘l'l- Rz 1_ «

Both of these cell structures are glued with the same multiplicities, and give rise to the same
labeled quiver of objects and morphisms:

w s
E N
/ A\
(] x(B||Y]|d ()
S A
N Ly L 2
Ri >y 7 R
~— —

However, the morphisms compose differently in the two face categories. For example, in the torus
(left), we see that 5 = WolL; = Sol,, while in the Klein bottle, we have that 5 = Wol; = SoR,.
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Hence the compositional structure of the face category encodes the orientation information of
how the top and bottom edges of the squares are glued together.

The face category Fc(X) of a weakly-regular cell structure X is a natural generalization of the
usual face-poset of a regular cell structure. Indeed, when X is a regular cell complex, the face
category Fc(X) is exactly the usual face poset. This follows from the fact that for a regular cell
complex, a cell X« in the boundary of Xp is included into the boundary in exactly one way. The
face category shares some of the same nice order properties as the face poset, such as having a
grading.

Proposition 1.2.21. The face category Fc(X) of a weakly-regular cell structure is a GAC, with grading
given by cell dimension.

Proof. The morphism structure of Fc(X) makes the category acyclic. The grading follows from
the fact that each cell of dimension n + 1 is attached along the closures of cells of dimension n.
Every morphism o« — (3 with dg = d« + 1 factors through a cell of dimension dy +j for each
1 <j < n— 1. Hence every indecomposable morphism is a covering morphism, and P inherits a

grading. O

The face category of a weakly-regular cell structure also generalizes some of the combinatorial
features of the face poset. For example, consider this variant of the diamond property.

Proposition 1.2.22. Let Fc(X) be the face category of a weakly-reqular cell structure (X, o, Ko )« Let
o <2y, and p : « — 7. There are exactly two distinct composable pairs of covering morphisms in Cov(p).

Proof. The map p : « — 7y corresponds to a cell p € 0K, of dimension d4 that is mapped by ¢-,
onto Xy. In the regular cell structure X, there are exactly two cells t1, T2 such that o <17 7; <17 7y,
where we have identified y with the open cell of dimension d, in X,. We get a pair of maps
Tj : Bj — v, where X, and Xg, denote the (not necessarily distinct) cells of X that t; and T2
are mapped to by ¢-. Every pair of composable arrows through a cell of dimension dy + 1 that
compose to p must include t7 or ;. For each 7;j, there is a unique cell oj € Kp; such that 1505 = p,
proving the result. O

Finally, we get a reconstruction result analogous to that of regular cell structures.

Theorem 1.2.23. Let (Xu, o, K ) xepy be a weakly-regular cell structure for |X|. From the face category
Fe(X), we can reconstruct the topological space X up to homeomorphism.

Proof. We construct a topological space |Fc(X)| inductively by dimension. Let X™ denote the

X" = U Xq .

a:de<n

n-skeleton of X:
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At the nh step of the inductive construction, we will build a space | F¢(X)|™ and a homeomor-
phism @™ : |Fc(X)™| 5 X™.

As the base case, take | Fc(X)|° to be the discrete topological space on the set of points {& €
Fe(X) : dx = 0}, where d is the rank of the object & € Fc(X). This space is trivially homeomor-
phic to X° under the homeomorphism ®° : o — X.

For the inductive step, suppose we have homeomorphism ®™ : | F¢(X)|™ — X™. Fix an object

o € Fc(X) of rank dg = n + 1. First, we determine the regular cell structure X on D™*1. For each
distinct morphism p : « — o in Fc(X), there is a distinct cell of dimension d in Xs. Moreover,
given a pair of cells x > ¢ and p %> o, we have an incidence p < q in K, if and only if there is
an s : « — 3 such that qos = p. Since K is a regular cell structure, the decomposition Ky for
Dn+T can be reconstructed up to homeomorphism from the data of this poset [52, 86]. Without
loss of generality, suppose we have reconstructed X, exactly.

Pick a regular cell map f, : dD™! — |Fc(X)|™ that maps each cell p : « — ¢ in 0K, home-
omorphically onto the cell |Fc(X)|ox < |Fc(X)|. Such a map must exist by the definition of a

weakly-regular cell complex. Consider the following commutative diagram in the category Top :

bo

opm™+1 Xn
_ o
~ i ] _—
oDnt! g E | Fe(X)|™
DTLJr] —————————————————————————— > XTL U XO‘
_
/ r /
pn! | Fe(X)|™ U o]

The front and back faces of the cube are pushout squares. Since three labeled arrows from the
front face to the back face are homeomorphisms, there is an induced homeomorphism | Fe¢(X)|™ u
|o| — X™ U Xo. Repeating this process for all cells of dimension n + 1 allows us to extend @™ to
a homeomorphism @™+ : | Fe(X)|M+! 5 xn+T, O

Remark 1.2.24. The crux of this argument is that the compositional structure of the face category
encodes all the gluing information of the attaching maps, such as the "orientation" of the gluing.
For example, when considering the torus and the Klein bottle (Example 1.2.20), the constructions
diverge exactly when the two-cell is glued in with different orientations along the southern edge.
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1.2.2.3 An exit path perspective

We have constructed the face category of a weakly regular cell complex in a combinatorial manner,
with morphisms capturing inclusions of cells into the boundaries of other cells. We may instead
link the face category to the theory of exit path categories of stratified spaces. In short, an exit path
in a stratified space is a path y that only moves from cells of lower dimension to cells of higher
dimension. The space of exit paths, up to homotopies which preserve the exit-path property, yield
a category of exit paths. The exit path categories (and their opposite entrance path categories) are
prevalent in discrete Morse theory [75, 93], and are invaluable for representations of constructible
sheaves and stacks on stratified spaces [33, 81, 83] following the work of Treumann [118].

Definition 1.2.25 (Tagged weakly-regular cell structure). Let X = (X, ¢, K«)« be a weakly-
regular cell structure. A tagging for X is the choice of a point x« € X« for each index o. We call

the collection (X, X, P, Ko )« @ tagged weakly-regular cell complex.

Definition 1.2.26 (Discrete exit path). Let X = (Xq, X«, ®o, K« )« be a tagged weakly-regular cell
structure. A discrete exit path in X is a Moore path y : [0, T] — |X] satisfying the following
conditions.

(i) v(0) = x« for some «.
(ii) v(T) = xp for some f3.

(iii) The function t — dim(y(t)) is weakly increasing, where dim(x) is the dimension of the

unique cell of X containing x.

Remark 1.2.27. The "discrete" qualifier is not meant to imply that anything about the path vy is
discrete. Instead, we are limiting the endpoints of our paths to the discrete set of points {Xxq}«-
This is in contrast to the usual definition of an exit path in a stratified space, which can begin

and end at any point.

Definition 1.2.28 (exit path homotopy). Let v : [0, To] — |X| and n : [0, T1] — |X]| be exit paths
from x to xp in a tagged weakly-regular cell structure. An exit path homotopy H : y = n from
Y to 1 is a continuous map H : [0, 1] x [0, 00) — |X| that satisfies the following conditions.

(i) HO,t) =v(t ATp) forall t = 0.
(ii)) H(1,t) =n(t A Ty) forall t = 0.

(iii) H(s,—): [0,00) — |X| is an eventually-constant exit path for all s € [0, 1].
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That is, H is a fixed-endpoint Moore-homotopy from y to 1 such that every slice is an exit path.

Given a pair of discrete exit paths vy, with the same endpoints, if there is an exit path ho-
motopy H : vy = 1, we say that y and n are exit path homotopic, and write y ~ 1. This is an
equivalence relation, and we denote the equivalence class of y by [y].

Definition 1.2.29 (Discrete exit path category). Let X = (Xu, X«, o, K)o« be a tagged weakly-
regular cell structure. The discrete exit path category of X, denoted DExitx, is the category
consisting of the following data.

* Objects. The objects of DExitx are the tags {x«}«-

* Morphisms. The set of morphisms from x to xp is the set of exit path homotopy classes

of discrete exit paths from x, to xg. That is,
DExitx (x«, xp) = {[Y] : v is a discrete exit path from x« to xp }.

¢ Composition. Given x« b, Xp Inl, X5, the composition [n] o [y] is given by [n *y], where

n #y denotes the usual concatenation of Moore paths.

This is easily seen to be a valid category. Moreover, since dim(y(t)) must be weakly increasing
in t and each cell X is contractible, DExitx is an acyclic category. In fact, it's a GAC.

Proposition 1.2.30. DExitx is a graded acyclic category, graded by r(x«) = du.

Proof. To confirm that DExitx is graded by dimension, we must show that every morphism

[Y] : xa — x5 with ds = dy + 1 factors as

[v1] [v2] [Yn-1] [vn]
Xa Xg, e XBo X5

[v]

where df,j = dy +j. If n = 1, this vacuous, so suppose n > 2.

The representative discrete exit path y : [0, T] — |X| from x« to x5 lifts to a unique path ¥
in D4 such that ¢5(§(t)) = y(t). For each cell 0 € K5 Let X¢(o) denote the cell of X onto
which o is mapped homeomorphically. Tag each o € X5 with y, := d>g] (x¢(0))- The path ¥ is
a discrete exit path with respect to this tagged weakly-regular cell structure. Moreover, inside

the ball D95, the path ¥ is exit path homotopic to a discrete exit path fj which passes through
the tags yg,,..., Yo, , in order. Pushing forward by ¢; yields a discrete exit path n ~ vy in X
that passes through xp; := X¢(¢;). Taking n; to be the sub-path from xg; , to xg;, we find that

[v] = [MnloMn-1]o---om] u
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Theorem 1.2.31. Let X = (Xu, o, K)o be a weakly-reqular cell structure equipped with a tagging
{X«}« There is an isomorphism of categories:

DExity = Fc(X).

Proof. The isomorphism ¥ : Fc(X) — DExitx acts on objects and morphisms as follows.
* Objects. ¥Y(x) := x«.

* Morphisms. For an identity morphism id«, take ¥(id«) to be the exit path homotopy class
of a constant path on x.. For a non-identity morphism o : « — (3, take the straight-line
path 5 : [0,1] — D46 from ¢E1(x“) e o < 0D to ¢E1(X]’3) e D4s. The map v, (t) :=
dp(Yo(t)) is a discrete exit path from x« to xg. We take ¥(0) := [yq].

To verify that ¥ is a functor, we may essentially repeat the argument of Proposition 1.2.30. Since
the domain and codomain are graded, it suffices to check that ¥(to o) = ¥(1) 0 ¥(0) when
« % B 5 § are a composable pair of covering morphisms. The path vy, * v lifts a unique path
fi in K5 that follows straight-line segments (l)g1 (X) ~ Rp ~ 4)5_] (xs), where %5 := d)g] (xs5),
and R« and X denote the unique points in cl)g1 (xa) N (Too) and d)g] (xg) N T respectively. The
discrete exit path fj with respect to the corresponding tagging on Xs is exit path homotopic to
the straight-line path ¥1.¢ : X« ~» R5. The pushforward of this path by ¢5 is exit path homotopic
to v * v+, and is exactly the path y..s. This proves associativity.

Y is clearly a bijection on objects, but we still must verify that ¥ is full and faithful. Since Fc(X)
and DExitx are graded, it suffices to verify ¥ : Fe(X)(«, 3) — DExitx(x«, xp) is a bijection when
3 covers «. This follows from how d)g] (x«) picks out a distinct point in every cell of Xp that
is mapped to X« by ¢g. Two discrete exit paths with respect to the induced tagging on X5 are
exit path homotopic if and only if they begin and end at the same point. This easily yields a

one-to-one correspondence Fc(X)(«, 3) = DExitx (X, X ). O

Remark 1.2.32. This theorem also shows that the choice of the tagging {xs € Xy}« does not
impact the categorical structure of DExitx. Hence, we may safely discuss the exit path category
on an un-tagged weakly-regular cell structure without ambiguity.

It will also be useful to define discrete entrance paths on a tagged weakly-regular cell structure,
and the discrete entrance path category. A Moore path v : [0, T| — |X] is a discrete entrance path
if and only if the reversed path y™V(t) := y(T —t) is a discrete exit path. Hence, the quantity
dim(y(t)) is weakly decreasing in t instead of increasing. Two entrance paths y and n are entrance
path homotopic if there is a fixed-endpoint Moore homotopy H : v = 1 that is an entrance
path on each slice. Analogously to the discrete exit path category, the discrete entrance path

category DEntx again has entrance path homotopy classes of discrete entrance paths for objects,
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with composition given by [y] o [n] = [n*y]. By identifying y°P = ", there is a canonical
isomorphism DEntyx = DExit(;(p.

While the entrance path category DEnty is still an acyclic category, it is not necessarily graded.
In particular, if X has cells of every dimension, then DEntx will have no minimal objects with
respect to the underlying poset structure, and will fail to have a grading.

1.3 SIGNED INCIDENCE STRUCTURES

In order to add and subtract maps along morphisms in a GAC in a manner yielding the correct
cancellations for cohomology, we need to assign parities to the covering morphisms. This assign-
ment is a mild generalization of the signed incidence relation on a poset [33, 45, 52, 54], which

we now briefly review.

Definition 1.3.1 (signed incidence relation on a poset). A signed incidence relation on a graded
poset (P,r)isamap [—:—]: P x P — {-1,0,1} that satisfies the following conditions.

(i) [x:y] # 0if and only if y covers x.

(ii) Forany x <z, > cp[x 1 Y]y : 2] = 0.
(iii) For any e € P of rank 1, there are exactly two cells vo, vi covered by e, and [vo : e] = —[v7 : e].
Remark 1.3.2. We make a few remarks on this definition.

1. Condition (i) ensures that the data of a signed incidence relation is determined by how it
acts on covering pairs x <7 y.

2. Condition (ii) is capturing information about intervals of length 2 in P. The specified sum
D,ep[x t z][z ¢ y] is trivially equal to 0 whenever 7(z) # r(x) + 2. Moreover, when r(z) =
r(x) + 2, the sum reduces to:

Dlxiyllyizl= Y [xiylly:zl.

ye?P y:xhiy<hiz

3. Condition (iii) is not always included in the definition of a signed incidence relation. Follow-
ing [54], we adopt this convention of opposite parities on one-cells to eventually enforce a
correspondence between global sections of cellular sheaves and the kernel of a coboundary
operator.

Our first task is to generalize this definition to a graded acyclic category. Incidence algebras for
acyclic categories have been studied [99], but without a clear analogue to the signed incidence
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relation above. However, the observation that a morphisms in an acyclic category plays the role of
an interval in a poset leads to a suitable generalization by changing the domain of the incidence

structure from pairs of objects to arrows in the acyclic category.

Definition 1.3.3 (signed incidence structure on a GAC). A signed incidence structure on a
graded acyclic category (P, 1) is a map e : Mor(P) — {—1,0, 1} that satisfies the following condi-

tions.
(i) Supported on covering morphisms. e(x 5 y) # 0 if and only if x <17 y.

(ii) Coboundary condition. For any x <zand h:x — z,

D, elfe(g) =0

gof=h

where the sum ranges over pairs of composable arrows x I, o 9 2z such that gof=h.

(iii) 1-cell condition. For any e € P of rank 1, there are exactly two covering morphisms fy, f;

with codomain e, and e(fy) = —e(f7).

Remark 1.3.4. As in the case of signed incidence structures on posets, the coboundary condi-
tion reduces to a statement about "intervals" of length 2. € : Mor(P) — {—1,0,1} satisfies the
coboundary condition if and only if for every pair x <2 y and map h: x — y, the sum

> e(fe(g) =0.

(f,g)eCov(h)

In order for the sum in the coboundary condition to exist, Cov(h) must be finite for every such
h.

In the event that the graded acyclic category P is itself a poset, a signed incidence structure on

P induces a signed incidence relation under the correspondence:

] e(x =) if P(x,y) has a unique inhabitant
x:y] =
0 else.
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Not every GAC admits a signed incidence structure. To witness this failure, one may look to
the many posets that fail to admit signed incidence relations, such as the following poset graded

by height.

[ ]

[ ] ° [ ]

°
This poset does not admit a signed incidence relation, as there are three distinct composable pairs
of morphisms from the bottom object to the top object.

The face posets of regular cell structures form a broad class of posets that admit signed inci-

dence relations [33, Section 6.1.1]. Similarly, the face categories of weakly-regular cell structures

admit signed incidence structures. We now give an explicit algorithm for finding a signed inci-

dence structure on Fc(X) for a weakly-regular cell structure X.

Algorithm 1.3.5. Let X = (Xq, do, K« ) be a weakly-regular cell structure with face category
Fe(X). Construct € : Mor(Fc(x)) — {—1,0,1} as follows.

1. For each cell X of dimension d > 1, fix a homeomorphism D4« ~ R4«, and an orientation
for R4~ in the form of an ordered basis {b1,...,bq,}. This data induces an orientation on

Dd«, and consequently on X, = D%« when pushed forward by d)o(‘Dda.

2. If X4 is a 1-cell, the orientation on D' corresponds to a direction for the edge ¢ — .
Suppose the source vertex is attached to vp and the target vertex to vi by ¢«. Then the

covering morphisms vo — o and vi — « are assigned —1 and +1 respectively.

3. If Xy is a dy-cell for dy > 2, each cell 0 € 0Ky of dimension dy = dy — 1 inherits an
orientation from the orientation {by,...,bg,}. In particular, we adopt the outward normal
convention [80]. The attaching map ¢, maps 0 homeomorphically onto a cell Xg. If the
orientation on o induced from the orientation of D, when pushed forward by ¢, agrees
with the orientation on X from D98, assign to the covering morphism o the value €(0) := 1.

If these orientation disagree, instead assign e(o) = —1.
4. All other morphisms T are assigned e(t) = 0.
At the end of the process, we have a signed incidence structure.

Proposition 1.3.6. The assignment € : Mor(Fc(X)) — {—1,0,1} constructed in Algorithm 1.3.5 is a

signed incidence structure.
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Proof. The resulting assignment € is clearly supported on covering morphisms, and satisfies the
1-cell condition. We need to check the coboundary condition.

For a given cell X, let O(«) denote the chosen orientation on X«. For a boundary cell o € 0K«
which is mapped homeomorphically onto Xg by ¢, let Og(B) denote the orientation induced
on Xp by X« through the cell 0. Finally, given a pair of orientations O; and O, on the same cell,

write:

1 if the orientations agree
E(01,02) =

—1 else.

Consider a pair of cells X, and X, with d, = d« + 2, and fix a map p : « — v in Fc(X). By
Proposition 1.2.22, there are exactly two distinct composable pairs of arrows « 2, B; 5, v with
o<1 Bj <1 vand Tj005 =p,j =1,2. To prove that € is a signed incidence structure, it suffices to
show that e€(t1)e(07) = —€(12)€e(02). The desired equation may be re-written as

E(Ox,(B1),0(B1))E(Oq, (x),0(et)) = —E(Ox,(B2), O(B2))E(Op, (), O(ex)) .

Notice that if we flip the orientation O(f31) to an opposite orientation, then we also flip the orien-
tation Og, (). Consequently, both terms in the left hand side would change sign, leaving the left
hand side unchanged. The left hand side is therefore independent of O(f31), and we may assume
without loss of generality that E(OT] (B1),0(B1 )) = 1. Similarly, we may show the right hand
side is independent of O(f,), and assume without loss of generality that E(Ox,(B2), O(B2)) = 1.
It now sulffices to show that

E(Og, (), 0(x)) = —E(Oq, (), O(cx)) .

But this follows easily from the fact 31 and 3, lie on opposite sides of « inside of X, . Since both
Xp
orientations on X4, proving the desired equality. ]

, and Xp, have orientations that agree with that of X, Hence 01 and 0, must induce opposite

1.4 CELLULAR SHEAVES

With graded acyclic categories and signed incidence structures in hand, we are finally able to
define cellular sheaves.

Definition 1.4.1. Let P be a levelwise-finite graded acyclic category that admits a signed incidence
structure. A cellular sheaf on P is a functor ¥ : P — D for some data category D. We call the
D-object F(x) € D the stalk over x for each object x € P. Meanwhile the D-morphism JF¢ := F(x 5
y) : F(x) — F(y) is called the restriction map over f: x — y.
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When 7P is a poset, the at-most-uniquely inhabited homsets enforce a friendly composition
property for the restriction maps. Namely, if x < y < z in the poset P, then JFy<, 0 Tx<y = Fx<z.
This follows from the uniqueness of morphisms in homsets.

Equivalently, cellular sheaves can be defined in terms of cells and covering-morphisms exclu-
sively. That is, a cellular sheaf on P is a choice of an object F(x) € D for each x € P, and a
D-morphism F : F(x) — F(y) whenever f : x — y is a covering morphism in P. From this
information, all other restriction maps can be determined by composing chains of covering mor-
phisms.

Definition 1.4.2. Let 7,5 : P — D be cellular sheaves defined on the same acyclic category P. A
sheaf morphism ¢ : 7 — G is a natural transformation.

With sheaf morphisms, we may form a category of cellular sheaves Shv(P; D) := [P, A].

1.4.1  On the definition of cellular sheaves

There are a variety of different definitions of "cellular sheaf" in the literature. The most common
definitions either take the domain of a cellular sheaf F to always be the face poset of a regular cell
structure X [30, 31, 45, 52, 54, 55, 102], or allow the domain to be a more-or-less arbitrary poset
[20, 33, 40, 66]. The first definition has a generally more topological flavor. By restricting to the
face posets of regular cell structures, this definition keeps cellular sheaves closer to their origins
in algebraic topology. Sheaves have been used to study topological spaces with great success
since Leray’s work as a prisoner of war in Nazi Germany [89]. Straying too far afield, especially
when unnecessary, might disconnect cellular sheaves from their natural place in the history of
mathematical thought. Moreover, the poset inherits a natural grading by dimension and a signed
incidence relation via orientations, as discussed in Section 1.3. This additional structure allows
for a rich cohomology theory, as well as the introduction of dynamics and spectral theory. Finally,
face posets of regular cell complexes are better behaved than general graded partially ordered
sets that admit signed incidence structures, and cellular sheaves defined on them will be better
behaved as well.

The second definition, on the other hand, is more combinatorial in nature. While still topolog-
ical, a cellular sheaf on an arbitrary poset allows one to extend certain aspects of the theory of
cellular sheaves, most notably those that do not require an appeal to the graded structure. This
comes at the expense of the clear connection to topological spaces and cohomology. Adjectives
can be added to get access to those tools as needed and desired.

Our definition of a cellular sheaf in this thesis deviates substantially from both of the preceding
definitions. On the topological v. combinatorial divide, we aim to strike a balance. When our

graded acyclic category is a poset, we are more-or-less exactly restricting to the class of posets
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in which we can discuss cohomology and Laplacian dynamics. However, by divorcing cellular
sheaves from those posets that specifically come from the faces of regular cell complexes, we are
treating cellular sheaves as a fundamentally combinatorial object.

This choice is further justified by our focus on network sheaves—cellular sheaves defined over
graphs. While graphs can be viewed as cell structures, it is more natural to think of of them
as graded posets directly; they are combinatorial—not topological—structures. For applications
in applied mathematics, the cell structure perspective requires additional conceptual machinery
that may obscure the underlying combinatorial nature.

More strikingly, our definition of a cellular sheaf generalizes from posets to acyclic categories.
This generalization serves a concrete purpose. When looking at network sheaves, by allowing for
multiple morphisms between objects, we are able to accommodate graphs with self-loops. Such
graphs sometimes admit meaningful interpretations in applications of cellular sheaves. While
graphs with self loops can be studied in the existing framework of cellular sheaf theory easily
through subdivision or ad-hoc methods, defining cellular sheaves over acyclic categories provides
a natural systematic framework for doing so. The fact that many results about cellular sheaves
on posets can be lifted to a more general acyclic categorical setting is an additional benefit.

1.4.2 Cellular sheaves are sheaves

Definition 1.4.1 may initially appear disconnected from classical sheaf theory. There are at least
three apparent issues.

1. No topology is explicitly present in the definition—classical nor Grothendieck.

2. A sheaf on a category C is a contravariant functor J : C°%° — D that satisfies the sheaf
condition. However, a cellular sheaf is a functor with domain P, not P°P as one would
expect.

3. The sheaf condition is notably absent from this definition.

In [33, Section 4.2], Curry cleanly resolved all three of these issues for cellular sheaves on
posets through the use of the (upper) Alexandrov topology * [4]. Given a partially ordered set
(or more generally a preordered set) P, the order structure induces a topology on P whose open
sets are exactly upward-closed sets with respect to the order. That is, U < P is open if and only if
whenever x <y and x € U, then y € U as well. This topology has a basis given by the collection
of upsets 1 x := {y € P : y > x} for all x € P. This topology cleanly resolves all three apparent
issues:

2 The "upper" prefix is to distinguish from the analogously defined lower Alexandrov topology, whose open sets are
downard-closed sets. [82]
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1. The Alexandrov topology clarifies the topological structure.

2. The open set structure on the Alexandrov topology on a poset P is order-reversing with
respect to the partial order relation. That is, x <y == (1 x) 2 (1 y). Given that a sheaf
on a topological space X is a functor F : Open(X)°? — D for some data category, this
order-reversing property explains the absence of the opposite category construction.

3. Finally, assuming our data category D has enough limits and colimits, the functor category
[P, D], or equivalently the category of D-valued cellular sheaves on P, is categorically equiv-
alent to the category Shv(P, D) of D valued sheaves on P with respect to the Alexandrov
topology [33, Theorem 4.2.10]. Since these sheaves must satisfy the sheaf condition, so do
the cellular sheaves by pushing through the equivalence.

Remark 1.4.3. There are other natural topologies one can put on a posetal category. Such topolo-
gies and the sheaves on them have been studied by Lindenhovius [82] and Hemelaer [58].

Unfortunately, the Alexandrov topology fails to allow a cellular sheaf on an acyclic category P
to be viewed as an honest sheaf on a topological space. By definition, a presheaf on a topological
space X is a contravariant functor on the category of open sets Open(X), which is necessarily a
thin category. Hence there is no way to accommodate multiple parallel arrows between objects
in Fe(X).

This situation can be partially rectified through a Grothendieck topology. When a category €
is endowed the indiscrete Grothendieck topology (also known as the chaotic topology), every
contravariant functor J : C°° — D is a sheaf on €. This gives us a trivial way to view a cellular
sheaf as a sheaf.

Proposition 1.4.4. Let F : P — D be a cellular sheaf on an acyclic category P. F is a sheaf on P°P
topologized by the indiscrete topology.

While technically a sheaf, this is not a satisfying resolution. The cellular sheaf on P is a sheaf
on P°P, not P. However, it is worth remarking that this really is no different than the Alexandrov
topology on a poset. Given a poset P, the indiscrete topology on P°P assigns a unique covering
sieve to each object x € PP given by the overcategory P°P/x. This exactly corresponds to the set
of points {y € P : x < y} with respect to the ordering on P — a basic open set in the upper
Alexandrov topology. Hence while it is less conceptually and linguistically pleasing for a cellular

sheaf on an acyclic category P to be a presheaf on PP, it is the natural generalization.

Remark 1.4.5. When P := Fc(X) is the face category of a weakly-regular cell complex X, we can
view a cellular sheaf J : Fc(X) — P in a more satisfying way. Through the identifications Fc(X) =
DExitx and DEntx =~ DExit;,, as discussed in Section 1.2.2.3, a cellular sheaf on Fc(X) is a sheaf
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on the discrete entrance path category DEntx with the indiscrete topology. This interpretation
further links cellular sheaves to constructible sheaves, a connection first explored by Shepard
[112].

1.4.3 Sections of cellular sheaves

The natural interpretation of a cellular sheaf J : P — D is as a data structure. This is especially
clear when the data category D has objects that are sets with certain additional structure, and
morphisms that are structure preserving set maps (or more generally, when D is a concrete
category). Objects in the data category D are interpreted as different spaces in which data can
live. For each object x € P, the stalk F(x) € D over x represents a choice of a space in which
data can live. The restriction maps, on the other hand, provide local consistency conditions that
may-or-may-not be satisfied by choices of data living over each point in P. A consistent selection

is a section.

Definition 1.4.6. Let F : P — D be a cellular sheaf. Let Z < P be a sub-category. The space of
sections over Z, denoted I'(F; ), is the limit

N z):= limfr"}Z

in the category D, when it exists. When Z = P, we call the sections I'(¥) := I'(F;P) the global
sections of J.

When the objects of D can be thought of as structured sets, such as vector spaces or R-modules,
spaces of sections take on a definite meaning. Given a cellular sheaf J : P — D, and a subcategory
Z < P, each point x € I'(F;Z) can be thought of as a locally consistent choice of data living over
each stalk 0 € Ob(Z). In particular, for each map f : 0 — T in Z, the corresponding restriction

map F¢ : F(0) — F(1) must map xg to X-.

1.4.4 Sheaf operations

When the data category D admits certain categorical operations like biproducts, tensor prod-
ucts, and pullbacks (among others), we obtain corresponding operations on cellular sheaves;
these operations allow us to build new sheaves out of old ones. In particular, all six functors of
Grothendieck’s six functor formalism can be applied to cellular sheaves.

These operations generally lift pointwise from the data category to the sheaf category. For
instance, given cellular sheaves J1,F, : P — D, their direct sum F7 @ F, assigns to each cell
o the direct sum F;(0) @ F,, with restriction maps acting componentwise. Similarly, pullback
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operations allow us to transfer sheaves across cellular maps ¢ : P — Q while pushforward
operations aggregate local data along such maps. The tensor product enables the construction
of sheaves modeling coupled systems, where interactions between different data types must be
captured within the sheaf structure. Access to these sheaf-building constructions is part of what
makes the theory of cellular sheaves such a flexible framework for describing networked systems
in applied mathematics.

The details of these operations for the adjoint pairs (pullback 4 pushforward) and (tensor —
hom), as well as a few other operations like direct sums, are described in more detail for cellular
sheaves of Hilbert spaces in Section 4.5. For more details on the general construction, as well as
the missing "extraordinary" adjoint pair ((—); 4 (—)'), see [33].

1.4.5 Cohomology

Let 3 : P — A be a cellular sheaf valued in an abelian category A. In Definition 1.4.1 of a cellular
sheaf, the requirement that the acyclic category P admit a grading r : P — IN and a signed
incidence structure € : Mor(P) — {—1,0, 1} is exactly the structure necessary to define a cochain
complex associated to J.

Definition 1.4.7 (Associated cochain complex). The cochain complex associated to a cellular
sheaf J: P — A is the cochain complex

(C*(P,F), %) == CO(P; ) & ' (9, ) & () 2
with k-cochains C¥(P; F) and k-coboundary maps &% : C*(P; F) — C**1(P; F) defined by:

CHP; F) = @ F(o),
r(o)=k

(") = > e(f)Fs(xo).

o4 T
fio—-T

The sum in the definition of 8% is understood as being taken over covering morphisms into T,

and Jf := JF(f) is a shorthand for the image of the morphism f under the functor J.

Proposition 1.4.8. (C*(P,5), 8*) is a cochain complex.
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Proof. This follows straightforwardly from the coboundary condition in the definition of a signed
incidence structure. Suppose that x € C*(P; ¥) is supported only on F(o) for a single point o of
grade k. One may compute:

(18" %)r = > e(9)F((8*%)x)
pivans

= Z Fg | €9) Z e(f)F¢(xo)

X1 T o<1X
gxX—tT f:o—x

= D D) e(9)e()Fgor(xo)
X1t o<ix

IX>T fioox

> >, elg)e(f)Fn(xo)

0<12T (f,g)eCov(h)
h:o—T

0.

Thus 61 0 8% = 0, and (C*(P,F), &°) is a cochain complex. O

Remark 1.4.9. This argument does not require that the cellular sheaf be valued in an abelian
category. If A is merely additive, every cellular sheaf 5 : P — A on a finite graded acyclic
category will have an associated cochain complex.

Definition 1.4.10 (Cellular sheaf cohomology). Let 3 : P — A be a cellular sheaf valued in an
abelian category A, with associated cochain complex (C*(P,F), §*). The k' sheaf cohomology
of P with coefficients in J is the family of quotients

H*(P;F) := ker(6%"") /im(5%),

with the convention that im(6~") := 0.

Remark 1.4.11. It is something of a misnomer to say "the" associated cochain complex and "the"
sheaf cohomology of a cellular sheaf. The definition of the coboundary map 6° ultimately de-
pends on a non-unique choice of a signed incidence structure € on the GAC P; different choices
of € lead to different definitions of 6. However, by a straightforward sign-flipping argument, it
can be seen that the image and kernel of each coboundary map & is invariant under different
choices of signed incidence structure e. Hence for most purposes (including cohomology) we
may leave the specific choice of € unspecified without creating ambiguity.

Oth

Remark 1.4.12. The 0" cohomology, HO(P; F) is straightforward to interpret; HO(®P; F) is isomor-

phic to the to the space of global sections of F, when identified with a subspace of C°(P;J).
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Higher cohomology can be interpreted as spaces of obstructions. We will describe this cohomol-
ogy and its interpretation for cellular sheaves valued in the category of Hilbert spaces in more
detail in Section 4.6. For more details on cellular sheaf cohomology in general, and its equivalence
to the usual definition of sheaf cohomology in terms of derived categories, see [33].

1.4.6  Cellular cosheaves

As with everything [121], cellular sheaves admit a dual notion of cellular cosheaves by turning all
the restriction maps around.

Definition 1.4.13. Let P be a graded acyclic category that admits a signed incidence structure. A
cellular cosheaf on P is a contravariant functor J : P — D for some data category D. We call
the D-object F(o) € D the costalk over o for each o € P. The D-morphism JF¢ := F(x 1 y) :

F(y) — F(x) is called the extension map over f: x — y.

When § is a multigraph (with self-loops allowed), viewed as a weakly-regular cell structure, a
Vectg-valued cellular cosheaf on G is exactly a sheaf on § in the sense of Friedman [42]. These
sheaves on graphs were used by Friedman to prove the Hanna Neumann conjecture on finitely
generated subgroups of free groups.

All the preceding constructions on cellular sheaves may themselves be dualized to cellular
cosheaves. Sections become colimits of subcategories, the sheaf operators adapt easily, the asso-
ciated cochain complex becomes an associated chain complex, and sheaf cohomology becomes
cosheaf homology. While cellular cosheaves valued in abelian categories are somewhat harder
to grasp than their cellular sheaf counterparts, cosheaves have proved useful for a variety of do-
mains beyond the Hanna Neumann conjecture such as graphic statics [30, 31]. While the focus of
this thesis is exclusively cellular sheaves of Hilbert spaces, we would be remiss not to mention
this beautiful dual theory.
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A BRIEF REVIEW OF BASIC FUNCTIONAL ANALYSIS

This chapter provides a concise review of the functional analytic foundations necessary for our
subsequent development of cellular sheaves valued in Hilbert spaces. While the classical theory
of weighted cellular sheaves operates within finite-dimensional vector spaces, the extension to
infinite-dimensional Hilbert spaces requires careful attention to the underlying operator-theoretic
machinery. We present these prerequisites in a self-contained manner, emphasizing those aspects
most relevant to our later constructions. Proofs are largely omitted, but can be found in standard
texts such as [38, 73, 100].

2.1 BANACH SPACES

Perhaps the most fundamental structure in classical functional analysis is the Banach space. A
Banach space is a complete normed vector space: a vector space X equipped with a norm | - | such
that every Cauchy sequence in X converges. This structure serves as a powerful generalization
of the finite dimensional R™ and C™, and serves as the backbone of functional analysis. Unsur-
prisingly, prototypical examples of Banach spaces are R™ and C™ with their standard Euclidean

norms, but the real utility emerges when working with infinite-dimensional spaces.

Definition 2.1.1. Let k be either R or C. A k-Banach space is a normed k-vector space (X, | - |)
that is complete with respect to the topology on X induced by | - |.

Example 2.1.2. The following are examples of real Banach spaces.

1. The space C[a,b] of continuous functions f : [a,b] — R with the sup-norm |f| :=
sup{|f(x)| : x € [a,b]}.

2. For each p € [0,], the space {P(IN) of sequences (x,,) with finite p-norm |(xn)[p :=

(Snen [xnlP)VP.

3. The Lebesgue spaces LP[a, b] of Lebesgue measurable functions f : [a,b] — R (modulo

1/p
almost-everywhere agreement) with finite p-norm |f|, = (XZ |fP dx) .

4. More generally, the spaces LP(Q, F, u; R™) of F-measurable functions f : Q — R™ (modulo
almost-everywhere) with finite p-norm, where (Q, J, ) is a measure space.
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These real Banach spaces have complex Banach analogues. Most results we discuss will hold
for both real and complex Banach spaces.

Remark 2.1.3. A linear subspace Y < X of a Banach space X need not be a Banach space. While
such a subspace inherits a norm by restriction, Y may not be complete with with respect to the
norm, such as when Y is not closed in X. This is the only way a subspace can fail to be a Banach

space.

Proposition 2.1.4. Let X be a Banach space. A linear subspace Y < X is a Banach space if and only if Y
is topologically closed in X.

2.2 HILBERT SPACES

Hilbert spaces form a special class of Banach spaces with well behaved geometry. In short, Hilbert
spaces are Banach spaces in which angles between vectors can be defined. Consequently, Hilbert
spaces admit stronger theorems and more geometric arguments that aren’t available in a generic

Banach space.

Definition 2.2.1. A k-Banach space X is a k-Hilbert space if the Banach space norm satisfies the
parallelogram identity
e+ yl® + = yl* = 2[x]1* + 2[1y|1%.

Remark 2.2.2. This is not the most common definition of a Hilbert space. Usually, a Hilbert space
is defined as an inner product space (X,(—, —)) which is complete with respect to the induced
norm |x| = 4/{x,x). These definitions are equivalent; any such inner product space is easily seen
to be a Banach space that satisfies the parallelogram identity. Conversely, in a real Banach space
X that satisfies the parallelogram identity, the expression

1

gy =g (I yl? + x —yl?)

|

defines an inner product whose induced norm is exactly the Banach space norm || — |. A similar
expression gives the inner product for a complex Hilbert space in terms of the norm. The addi-
tional structure of an inner product—and hence the ability to measure angles between vectors—
makes Hilbert spaces particularly well-suited to problems in geometry, physics, and signal pro-
cessing. However, when discussing maps between Hilbert spaces, especially in the context of cat-
egory theory, we do not wish to require that maps respect the inner product structures directly.
Hence we adopt a definition that treats Hilbert spaces as a special class of normed vector spaces.
This choice also allows definitions on normed vector spaces and Banach spaces to immediately

apply to Hilbert spaces without reference to the inner product.
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Example 2.2.3. R™ and C™ are Hilbert spaces with their usual inner products. Several key exam-
ples of real infinite dimensional Hilbert spaces are specializations of their Banach counterparts.

1. The space {?(IN) of square-summable sequences with inner product (x,y) = 3. .n XnYn-

2. The space L?[a,b] of square-integrable real functions (modulo almost everywhere agree-

ment with respect to Lebesgue measure) with inner product (f, g) = SZ f(x)g(x) dx.

3. More generally, the space L?(Q,F, 1) of square-integrable real-valued functions (modulo
agreement p-almost everywhere) on a measure space (Q, J, u).

These examples have complex Hilbert space analogs.

Remark 2.2.4. As a Banach space, every closed linear subspace of a Hilbert space X is itself a

Hilbert space.

Every Hilbert space X admits a Hilbert space basis {e, : « < 3} for some cardinal number
B, such that for every vector x € X, there is a unique sequence of coefficients cy € k, all but
countably many cy = 0, such that x may be written as a limit of finite sums limy_,p cx€x = X.
We abbreviate this limit to x = )}, cxe«. Every Hilbert space basis for X has the same cardinality
B3; this invariant is the dimension of X. A k-Hilbert space X is completely characterized its dimen-
sion. When a Hilbert space X admits a countable Hilbert space basis, X is said to be separable.
Equivalently, X is separable if and only if X has a countable dense subset.

The geometric properties of Hilbert spaces admit a notion of orthogonality not present in a

generic Banach space.

Definition 2.2.5. Let X be a Hilbert space. Two vectors x,y € X are orthogonal, denoted x L vy, if
vy =0.

Notation 2.2.6. Let X be a Hilbert space, and V < X a linear subspace. The orthogonal comple-
ment of V, denoted V7, is the linear subspace

Vi:={xeX:xLvforallve V}.

Remark 2.2.7. The orthogonal complement V* is always a closed subspace of X—and thus a
sub-Hilbert space—even when V is not closed. The double complement (V+), is the topological

closure of V in X.

2.3 OPERATORS

Banach spaces are topological vector spaces. Therefore linear maps A : X — Y between Ba-
nach spaces can be categorized according to how they interact with the topologies of X and Y.
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"Operator"” serves as a catch-all term for partially defined linear maps, regardless of topological

properties.

Definition 2.3.1. Let X and Y be vector spaces. A (linear) operator A : X — Y is a linear map
defined on a linear subspace Dom(A) < X. The domain of definition Dom(A) is the domain of

A, and X is the ambient space.

Remark 2.3.2. Linear operators are not required to be globally defined. They need not even be
defined on a sub-Banach space, as the linear subspace Dom(A) need not be closed. Therefore,
when specifying a linear operator, the domain must be specified as well. This flexibility allows,
for example, the analysis of differential operators on function spaces, which cannot be defined
for all functions, but only those which are sufficiently differentiable.

Care must be taken when composing partially defined operators. Given an operator A, let
R(A) denote its range. For a pair of composable unbounded operators A: X - Yand B: Y — Z,
it may be the case that R(A) € Dom(B). In general, the domain of B o A will be taken to be
Dom(BoA) := {x e Dom(A) : Ax € Dom(B)} = A~'(Dom(B)), unless otherwise stated.

There are many ways that a linear operator A : X — Y can interact with the topologies of X
and Y. We now highlight a few of these topological properties a linear operator may posses, and
the corresponding classes of operators.

2.3.1 Bounded and unbounded operators

Definition 2.3.3. Let A : X — Y be a linear operator between normed vector spaces. The operator
norm of A is given by

IAX]y
|Alop :=  sup .
xeDom(A) HXHX
If [Alop is finite, we say that A is a bounded operator. If [A[,, = o, we say that A is an
unbounded operator.

Remark 2.3.4. We adopt the convention that all bounded operators are assumed to be globally
defined unless stated otherwise. That is, if A : X — Y is a bounded operator, the domain Dom(A)
is assumed to be all of X, unless it is explicitly stated that A has a different domain. While
unbounded operators can, in principle, be defined globally, some form of choice is required to
exhibit such a map. Such pathological maps are rarely of interest, so we adopt the opposite
convention for unbounded operators; an unbounded operator is assumed to be a partial operator

unless otherwise stated.

Remark 2.3.5. The space B(X,Y), of bounded operators between Banach spaces X and Y is a

vector space under pointwise addition and scaling. The operator norm | — ||op defines a Banach
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space structure on B(X,Y). Even when X and Y are Hilbert spaces, the space (B(X,Y), | — [op) is
a Banach space, unless X or Y is finite dimensional.

Example 2.3.6. Let C*([0,1];R) denote the real Banach space of k-times continuously differ-
entiable real-valued functions supported on [0,1], equipped with the sup-norm | — |,. Let
D : C%([0,1;R) — C°([0,1];R) denote the derivative map D(f) = d%(f with domain Dom(D) =
C1([0,1];R) < C°([0,1];R). The operator D is unbounded; a continuous map f : [0,1] — R with
sup-nom ||f|, = 1 may have an arbitrarily large derivative at a point. It is not globally defined
as not all continuous functions are continuously differentiable.

If C'([0,1];R) is instead equipped with the Banach space norm |f|| = |[f|. + | Df||s, the map
D: C'([0,1;R) — C°([0,1];R) is a globally defined bounded operator.

Boundedness is closely related to continuity, as evidenced by the following theorem.

Theorem 2.3.7. Let A : X — Y be a Banach space operator with domain Dom(A). The following are
equivalent.

(i) A is bounded on its domain.
(ii) A is continuous on its domain.
(iii) A maps the unit ball B1(0) n Dom(A) in A to a bounded set in Y.

Thus an operator A : X — Y with domain Dom(A) is bounded if and only if it is continuous
on its domain. Similarly, unbounded operators are exactly those operators that are discontinuous
on their domains. Hence a bounded operator is exactly a linear map that respects the topology

of its domain as a normed vector space.

2.3.2 Densely defined operators

Definition 2.3.8. An operator A : X — Y is densely defined if Dom(A) is dense in X.

Remark 2.3.9. Since a linear subspace V < X is dense in X with respect to a chosen topology, having
a dense domain of definition is a topological property of an operator—not an algebraic property.

A Hilbert space operator A : X — Y may always be extended to a densely defined one. Suppose
that Dom(A) < X is a proper subset. There is a linear operator A : X — Y that extends A with
domain Dom(A) = Dom(A) + WL, where WL denotes the orthogonal complement
of Dom(A) in the ambient space X, and "+" denotes the internal direct sum of linear subspaces.
On elements x € DOT(A)L we take A(x) = 0.
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2.3.3 Closed operators

Definition 2.3.10. Let A : X — Y be an unbounded Banach space operator with domain Dom(T) <
X. A is closed if its graph I'(A) := {(x,Ax) : x € Dom(A)} € X@®Y is topologically closed. A is
closable if the closure I'(A) € X@Y is the graph of an operator A : X — Y. The extension A is

called the closure of A.

A bounded operator is closed if and only if its domain is closed. Hence a globally-defined
bounded operator is always closed. For unbounded operators, being closed is perhaps the most
important way in which an unbounded operator can still be well behaved. Closedness (or clos-
ability) is the necessary attribute in order to carry out a variety of constructions, including those
in spectral theory and semigroup theory, to be discussed later. The essence is the following equiv-
alent definition of closedness: A : X — Y is closed if whenever x,, is a sequence in Dom(A) that
converges to x € X, and A(x,,) converges to y € Y, then x € Dom(X) and Ax = y. Similarly, A is
closable if and only if whenever x,, — 0 in Dom(A) and Ax,, — y €Y, the limit y = 0. Hence we
see that to be closed is to satisfy a weak form of continuity, as further evidenced by the following
straightforward proposition.

Proposition 2.3.11. Let A : X — Y be an unbounded operator. If T is closed, then ker(T) < X is closed.

Closed operators enjoy another useful topological property. While an unbounded operator is
discontinuous, a closed unbounded operator is continuous with respect to the graph norm.

Definition 2.3.12. Let A : X — Y be a closed Banach space operator with domain Dom(A). The

graph norm on Dom(A) is the norm ||x|ra) :== (|x|% + |AX[{) 12
One may check that | — [r(a) is a well-defined norm on Dom(A). Moreover Dom(A) is com-
plete with respect to || — |r(a), making (Dom(A), | — |ra)) a Banach space.

Proposition 2.3.13. Let A : X — Y be a closed Banach space operator. A defines a bounded operator
A : Dom(A) — Y with respect to the graph norm on A.

2.3.4 Closed range operators
Definition 2.3.14. Let A : X — Y be a Banach space operator. A has closed range if its range
R(A) € Y is topologically closed.

To have closed range is a surprisingly restrictive property; even bounded operators usually
fail to have closed range. A handful of equivalent characterizations to having closed range are
offered by the closed range theorem [15, 78].
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Theorem 2.3.15. Let A : X — Y be a closed, densely defined Banach space operator. The following are
equivalent.

(i) A has closed range.
(i1) A* has closed range.
(iii) 0 is not an accumulation point in the spectrum o(A*A).
(iv) There is a constant C such that x| < C||Ax| for all x € Dom(A) n ker(A)>.

This theorem gives an indication of why many operators fail to have closed range. In order to
have closed range, an operator cannot shrink inputs too quickly.

Remark 2.3.16. For an operator A : X — Y, "closedness" and "closed range" are independent
properties. There are Banach space operators with closed range that fail to be closed, and closed
operators which fail to have closed range.

One useful property of a closed range operators between Hilbert spaces is that it admits a
bounded Moore-Penrose pseudoinverse.

Proposition 2.3.17. Let A : X — Y be a closed, densely defined Hilbert space operator. There is a unique
closed, densely defined operator At : Y — X with domain Dom(AT) = R(A) + R(A)*, called the Moore-
Penrose pseudoinverse of A, which satisfies the following properties.

(i) ker(AT) = R(A)*.

(i) R(AT) = Dom(A) nker(A)*.

(iii) ATA is the orthogonal projection onto the closure Dom(A) n ker(A)L.

(iv) AAT is the orthogonal projection onto the closure R(A).

Corollary 2.3.18. When A : X — Y is a closed, densely defined Hilbert space operator with closed range,
the pseudoinverse AT : Y — X is globally defined and bounded.

2.3.5 Structure preserving operators

There are a variety of different ways in which a Banach space or Hilbert space operator can
be "structure preserving." Four primary classes of structure preserving maps are isomorphisms,
isometries, co-isometries, and unitary maps.

Definition 2.3.19. A globally-defined Banach space operator A : X — Y is an isomorphism if it is
a bounded bijection with bounded inverse.
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Isomorphisms are exactly linear homeomorphisms with respect to the topologies induced by
the Banach space norms. By the open mapping theorem (Theorem 2.4.2), every bounded linear
bijection has a bounded inverse.

While isomorphisms respect the topologies of Banach spaces, they do not respect the norms

per se. In contrast, an isometry is an operator that preserves the norm structure exactly.

Definition 2.3.20. A globally-defined Banach space operator A : X — Y is an isometry if ||[Ax||y =
|x||x for all x e Dom(A).

All isometries are bounded by definition. A canonical example of an isometry is the right-shift
operator on an {P-sequence space, given by R(x1,x2,x3,---) = (0,x1,%2,X3,---). The Fourier
transform on L?(R) provides another fundamental example, becoming an isometry after appro-
priate normalization.

While isometries respect the Banach space norms, there is no guarantee that an isometry is a
bijection. When there is an isometric isomorphism between two Banach spaces, we say they are
isometrically isomorphic. This is one of the strongest ways in which two Banach spaces can be
equivalent to one another.

On Hilbert spaces, there are more designated classes of structure preserving maps. These maps
are best characterized through the use of the linear adjoint, discussed in detail in Section 2.5. All
the following classes of structure preserving maps are bounded, so one only needs the usual
bounded linear adjoint.

Definition 2.3.21. Let A : X — Y be a Hilbert space operator. Let Ix and Iy denote the identity
maps on X and Y respectively.

* Ais an isometry if A*A = Ix.
* Ais a co-isometry if AA* = Iy.
* A is unitary if A is both an isometry and a co-isometry.

Notation 2.3.22. Some sources reserve the term "unitary" for complex Hilbert spaces, and use
"orthogonal" for the analogous property on real Hilbert spaces. We use "unitary" for real and
complex Hilbert spaces for ease.
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2.3.6  Hilbert-Schmidt operators

Definition 2.3.23. Let X and Y be Hilbert spaces, and {e;}icr a Hilbert space basis of X. The
Hilbert-Schmidt norm of a bounded operator A : X — Y is given by

12
IA[ s = (Z \Aei§<> € [0, 0] .

iel
A bounded operator A : X — Y is a Hilbert-Schmidt operator if | Alps < .
The class of Hilbert-Schmidt operators between Hilbert spaces X and Y are closed under addi-

tion and scaling. Let HS(X, Y) < B(X,Y) denote the linear subspace of Hilbert-Schmidt operators.
HS(X,Y) forms a Hilbert space with inner product

(A, Byus := Y (Aei, Bey)y .
iel
This Hilbert-Schmidt inner product serves as an infinite dimensional analog of the familiar Frobe-
nius inner product of matrices.
Hilbert-Schmidt operators are one of the most well-behaved classes of Hilbert space operators.
Beyond being bounded, Hilbert-Schmidt operators are compact, meaning they map bounded sets
to precompact sets. All finite rank operators are Hilbert-Schmidt.

Remark 2.3.24. The Hilbert-Schmidt norm on HS(X, Y) is not equivalent to the operator norm on

HS(X,Y). However, they are related by the inequality | — [op < | — [Hs-

2.4 FUNDAMENTAL THEOREMS

The theory of Banach spaces rests on four key theorems, sometimes called the four pillars of
functional analysis [125]:

1. The Hahn-Banach theorem: bounded linear functionals can always be extended from sub-

spaces while preserving their norm.

2. The open mapping theorem: every surjective continuous linear operator between Banach

spaces is an open map.

3. The Banach-Steinhaus theorem: every pointwise-bounded family of continuous linear oper-
ators is uniformly bounded.

4. The closed graph theorem: a linear operator between Banach spaces is continuous if and
only if its graph is closed.
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These four theorems, while simple to state, capture deep properties of infinite-dimensional
spaces and form the foundation upon which much of functional analysis is built. Proofs of these
theorems may be found in any standard text on functional analysis, such as [15, 73, 100].

Theorem 2.4.1 (Hahn-Banach). Let X be a normed k-vector space, and V < X a linear subspace. Every
continuous linear functional f : V — k may be extended to a continuous linear functional f : X — k such
that [fop = [f]op-

Theorem 2.4.2 (Open mapping theorem). Let A : X — Y be a bounded surjective Banach space operator.
For every open subset U < X, A(U) < Y is open.

Theorem 2.4.3 (Banach-Steinhaus). Let X be a k-Banach space and Y a normed k-vector space, and
A < B(X,Y) a collection of bounded linear operators. If sup o, |[Ax| < oo for every x € X, then
sup e 4 1A op < 0.

Theorem 2.4.4 (closed graph theorem). Let A : X — Y be a globally-defined Banach space operator. A
is bounded if and only if the graph T'(A) is closed.

2.5 ADJOINTS

Definition 2.5.1. Let A : X — Y be a Hilbert space operator with domain Dom(A). An operator
B : Y — X is an adjoint of A if (Ax,y)y = (x, A*y)x for all x € Dom(T) and y € Dom(B), and
Dom(B) is maximal with with respect to this property.

Remark 2.5.2. When A : X — Y is not densely defined, the adjoint A* is not unique. As a trivial
example, consider a Hilbert space X and the zero-operator 0 : X — X with the one-point domain
{0}. Any maximally-defined operator A : X — X will satisfy the definition of an adjoint of 0.
However, when A is densely defined, the Hahn-Banach theorem and the Riesz representation
theorem ensure the adjoint A* is unique.

Proposition 2.5.3. If A : X — Y is a densely defined Hilbert space operator, A has a unique adjoint,
denoted A* : Y — X.

Remark 2.5.4. The domains of A and A* are intimately linked; extending the domain of T may
require shrinking the domain of T* to maintain the defining property of a linear adjoint.

The following proposition follows directly from the definition of the adjoint.

Proposition 2.5.5. Let A : X — Y be a densely defined linear operator. The adjoint A* : Y — X is a closed
linear operator.
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Remark 2.5.6. The adjoints of bounded linear operators enjoy all the usual properties of adjoints
in finite-dimensional linear algebra. For example, A* is always globally defined, and the operator

(=)* : B(X,Y) = B(Y,X)

is an involutive isometric isomorphism, where B(—, —) is the Banach space of globally defined
bounded operators equipped with the operator norm. Adjoints of unbounded operators do not
enjoy these same properties. For example, given a pair of unbounded operators A,B : X — Y, it
is not in general the case that (A + B)* = A* + B*.

Adjoints are closely linked to closedness of operators. Suppose that A : X — Y is a densely
defined operator with adjoint A* : Y — X. If A* itself is densely defined, then it has a unique
closed adjoint (A*)* : X — Y. Moreover, by the definition of the adjoint, this operator (A*)*
must extend the operator A; otherwise (A*)* would not be maximally defined. It follows that A
must be a closable operator, and (A*)* = A is its closure. This argument proves the following

proposition.

Proposition 2.5.7. Let A : X — Y be a densely defined Hilbert space operator. The following are equiva-
lent.

(i) A is closable.
(ii) A* is densely defined.

For closed, densely defined operators, the adjoint maintains its geometry from finite dimen-
sional linear algebra.

Proposition 2.5.8. Let A : X — Y be a closed, densely defined Hilbert space operator. The following
identities hold.

(i) ker(A) = R(A*)",.
(ii) ker(A*) = R(A)*.

(iii) R(A) = ker(A*)*.

(iv) R(A*) = ker(A)*.

Remark 2.5.9. Observe that when A has closed range, one exactly recovers the familiar relation-
ship R(A) = ker(A*)* of finite dimensional linear algebra.

Definition 2.5.10. Let T : X — X be a densely defined unbounded Hilbert space operator. T is
symmetric if (Tx,y) = (x,Ty) for all x,y € Dom(T). The operator T is self-adjoint if T = T*.

Finally, T is essentially self-adjoint if T has a self-adjoint extension.
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For bounded operators in B(X, X), "symmetric" and "self-adjoint" are coextensive. However, for
a symmetric unbounded operator A : X — X, it could be the case that Dom(A*) 2 Dom(A),
making A a symmetric operator that fails to be self-adjoint. In this case, A* is a closed extension
of A. If A is essentially self-adjoint, then A* = A will be self-adjoint. Since A* is always closed,
every self-adjoint operator is closed.

We conclude this section with an essential theorem, sometimes referred to as von Neumann’s
theorem, due to its connection to von Neumann’s seminal work on quantum mechanics [2].
Let A : X — Y be a Hilbert space operator with domain Dom(A). We say that A is positive
semidefinite if (Ax,x) > 0 for all x € Dom(A). We say that A is positive if it is both positive

semidefinite and self-adjoint.

Theorem 2.5.11 (von Neumann’s theorem). Let A : X — Y be a closed, densely defined Hilbert space
operator. Both A*A and AA* are positive operators.

Unlike the other theorems of this section, the proof of von Neumann’s theorem is not straight-
forward. A full proof may be found in [73, Theorem 3.24].

2.6 QUOTIENTS OF BANACH SPACES

Taking the quotient of a Banach space X by a subspace V has some subtlety. Not every linear
subspace V < X is itself a Banach space. while the norm | — | x on X restricts to a norm on V, the
subspace V need not be topologically complete with respect to this norm. For example, consider
the linear subspace of all polynomials P[a,b] < C[a, b]. The linear subspace P[a, b] is not itself
a Banach space, but is merely a normed vector space. The Weierstrass approximation theorem
ensures that every f € C[a,b] is a limit of Cauchy sequences in P[a,b], so P[a,b] cannot be
complete with respect to the sup-norm. Fundamentally, the problem is that P[a, b] is not closed.
In general, a linear subspace V of a Banach space X is a Banach space with respect to its induced
norm if and only if V is topologically closed in X.

Similar difficulties occur with quotients. Given a linear subspace V of a Banach space X, the
quotient vector space X/V may be formed as usual as the set of cosets {x + V : x € X}. When V
is closed, the Banach space norm | — |x induces the following norm on X/V:

Ix + Vxv = inf{[[x =v[x : ve V}.

This is a well-defined norm if and only if V is closed in X. Geometrically, this norm measures the
distance from x to the closed subspace V. When V is closed, the quotient space X/V is complete
with respect to | — |x/m, and hence is a Banach space. Hence a quotient of Banach spaces is a
Banach space, but the quotient of a Banach space by a linear space need not be Banach.
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Proposition 2.6.1. Let A : X — Y be a bounded Banach space operator. If the range R(A) is closed, there
is an isomorphism of Banach spaces X/ker(A) = R(A).

Proof. Simply use the usual map ¢ : X/ ker(A) — R(A) defined by ¢(x + V) = Ax. O

When R(A) isn’t closed, this theorem fails. While there is still an isomorphism of vector spaces,
the range R(A) will fail to be a Banach space, and hence ¢ will fail to be a Banach space isomor-
phism.

The quotient structure of Hilbert spaces is similar to that of Banach spaces. Let X be a Banach
space. When | — | x satisfies the parallelogram identity, so does the induced norm || — ||x,y, on
the quotient Banach space X/V for a closed subspace V < X. Hence a subspace quotient X/V in a
Hilbert space is itself a Hilbert space exactly when V is closed.

The structure of a quotient Hilbert space X/V can be understood through orthogonal comple-
ments. Given a closed subspace V of a Hilbert space X, we can decompose X as an orthogonal
direct sum, X = V@ V*, where V* is the orthogonal complement of V in X. Applying the first
isomorphism theorem (Proposition 2.6.1) to the orthogonal projection P : X — V1 gives a canoni-
cal isomorphism X/V =~ V1, providing the quotient space with a natural Hilbert space structure
inherited from X. Moreover, this isomorphism is unitary.

Using this isomorphism, we no longer need to take an infimum to define the quotient norm;
the norm of an equivalence class x + V in X/V is simply the norm of its unique representative in
V. This additional structure makes Hilbert space quotients particularly easy to work with.

2.7 SEMIGROUPS
Definition 2.7.1. Let X be a Banach space. A strongly continuous one-parameter semigroup on
X, or Cp-semigroup on X, is a map T : [0,0) — B(X) that satisfies the following conditions.
(i) T(0) =1
(i) T(s+1t) =T(s)T(t) forall s, t > 0.
(iii) T is continuous in the strong operator topology on B(X).
If item (iii) is replaced with
(iii") T is continuous with respect to the operator norm on B(X),
then T is a uniformly continuous semigroup. If a Co-semigroup has the additional property
iv) [T(t)|op < 1forallt >0,

then T is a contraction semigroup.
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To every Cp-semigroup T : [0,00) — B(X), there is an associated operator At : X — X called

the infinitesimal generator defined by the limit
T(t)x —x
A1(x):= Im ———,
T(x) = lim —=

whenever the limit exists. The domain Dom(At) is exactly the set of x € X for which this limit
converges. One may confirm by direct computation that the infinitesimal generator At is closed
and densely defined. Moreover, there is a one-to-one correspondence between Cy-semigroups
and their infinitesimal generators.

Remark 2.7.2. Even though the generator At may be an unbounded operator with a partial
domain Dom(AT) < X, the operator T(t) : X — X is bounded and globally defined for all t > 0.

When we wish to highlight the infinitesimal generator A of a semigroup T, we will often write
et or exp(tA) in place of T(t). This evocative notation emphasizes the following relationship
between Cp-semigroups ordinary differential equations on Banach spaces.

A

Proposition 2.7.3. The map x(t) = e**x¢ is a mild solution to the initial value problem:

That is, x(t) satisfies the integral equation x(t) = x(0) + SS Ax(s) ds. When xo € Dom(A), x(t) is a
strong solution to the initial value problem.

Not every closed, densely defined operator A : X — X generates a Co-semigroup. There are
a variety of useful and powerful theorems that characterize the operators that are infinitesimal
generators.

Definition 2.7.4. Let A : X — X' be a complex Banach space operator. A complex A € C is a regular
value of A if the following conditions hold:

(i) The map A, := A — Al is injective.
(ii) The inverse A;l : R(Ax) — X is bounded.
(iif) R(An) is dense in X.
The resolvent set of A, denoted p(A), is the set of all regular values of A.

Remark 2.7.5. Under suitable conditions on A : X — Y, the conditions defining a regular value of
A simplify considerably. If A is a closed operator, then condition (iii) may be replaced with the
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requirement that A, is surjective. If A is bounded, all three conditions may be replaced with the
single requirement that A, is a bounded linear isomorphism.

Remark 2.7.6. For a real Banach space X, the resolvent of an unbounded operator A : X — X is
the resolvent of the complexification A€ : X¢ — XC. Through this complexification, the spectral

theory of complex Banach spaces and Hilbert spaces may be adapted to real spaces.

Theorem 2.7.7 (Hille-Yosida). Let A : X — X be an unbounded linear operator, r € R, and M > 0.
The map A is the generator of a Co-semigroup T satisfying |T(t)| < Me™ if and only if the following
conditions hold.

(i) A is closed and densely defined.

(ii) Every real A > r is in the resolvent p(A), and for all n € N~,

IAL=A)"™] < D

Remark 2.7.8. Setting M = 1 and r = 0 gives necessary and sufficient criteria for A to generate a
contraction semigroup. However, the Lumer-Phillips theorem is often more useful in practice.

Definition 2.7.9. An operator A : X — X is dissipative if for all x € Dom(X) and A > 0, we have
[AL=A)x]| = Al

Similarly, A is accretive if for all x e Dom(X) and A > 0, we have
[AL+ A)x]| = Al

Theorem 2.7.10 (Lumer-Phillips). Let A : X — X be a Banach space operator. The map A is the generator
of a contraction semigroup if and only if the following conditions hold.

(i) A is densely defined.
(ii) A is dissipative.

(iii) A — Al is surjective for some A > 0.

2.8 THE SPECTRAL THEOREM

Definition 2.8.1. Let A : X — X be an operator on a Banach space. The spectrum of A, denoted
o(A), is the complement of the resolvent set of A in C. That is, o(A) := C\p(A).
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Proposition 2.8.2. Let A : X — X be a Hilbert space operator. The spectrum o(A) and resolvent p(A)
satisfy the following properties.

(i) o(A) < Cis open and p(A) < C is closed.

(ii) If A is a bounded operator, then o(A) is a bounded subset of C.
(iii) If A is self-adjoint, then o(A) is real.
(iv) If A is a positive operator, then o(A) is non-negative.

Remark 2.8.3. Unlike finite dimensional vector spaces, not all points in the spectrum of an op-
erator A : X — X are eigenvalues. That is, when A € o(A), there is no guarantee that there is a

vector x such that Ax = Ax (after possibly pushing through the complexification).

Even without eigenvectors, a self-adjoint operator A : X — X may be diagonalized by the
spectral theorem.

Theorem 2.8.4 (spectral theorem). Let A : X — X be a self-adjoint operator on a separable k-Hilbert
space X. There is a finite measure space (Q, W), a unitary isomorphism @ : X — LZ(Q, w; k), and a real
measurable y-a.e. finite function f : Q — k with corresponding multiplication operator My such that the

following conditions hold.
(i) x € Dom(A) if and only if My ®x = (f) - (Ox) is square integrable.
(ii) D TM;® = A.
(iii) The essential image of f is exactly o(A).

Remark 2.8.5. This is the multiplicative form of the spectral theorem; there are other equivalent
formulations in terms of spectral measures and direct integrals. The spectral measure formulation
will be useful for applying the Borel function calculus, which allows one to apply functions like
cos(x), sin(x)/x, or more generally any Borel function to Hilbert space operators. However, we
utilize the multiplicative form whenever possible as it is the most intuitive formulation of the

spectral theorem.

The spectral theorem for operators acts as an infinite-dimensional analogue to diagonalization.
The multiplication operator M¢ behaves like a diagonal operator on L2 (Q, w; k), and the unitary

operator @ acts like a change of basis.
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Part II

HILBERT SHEAVES
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3

FOUNDATIONS FOR CELLULAR SHEAVES OF HILBERT SPACES

The functors of the classical theory of cellular sheaves, as developed in Chapter 1, are gener-
ally valued in abelian categories, such as the category of vector spaces. Hansen and Ghrist [54]
introduced weighted cellular sheaves, valued in the category FinHilby of finite-dimensional
Hilbert spaces. Weighted cellular sheaves admit a rich spectral theory, akin to spectral graph
theory, which has found application in opinion dynamics [55], neural networks [13, 54], clock
synchronization [9o], and beyond. However, some applications naturally lead to sheaves valued
in infinite-dimensional Hilbert spaces with unbounded, partially-defined operators as restriction
maps. This chapter develops the operator-theoretic foundations necessary to extend cellular sheaf
theory to this infinite-dimensional setting.

The passage from finite to infinite dimensions introduces two fundamental complications.
First, the category of Hilbert spaces and bounded operators, while extensively studied, lacks the
abelian structure that makes the finite-dimensional theory so tractable. Second, when we further
admit unbounded operators in our cellular sheaves, discontinuities are introduced which cause
even basic categorical constructions to become delicate. Composition of morphisms requires care-
ful attention to domains, cochain complexes associated to sheaves may fail to have well-defined
cohomology groups, and certain categorical limits cease to exist.

This chapter outlines the addresses these challenges through three main developments. Sec-
tion 3.1 introduces the necessary categories of Hilbert spaces, carefully distinguishing between
bounded operators (Hilby) and unbounded operators (Hilby i, CoreHilby ;). We demonstrate
that while Hilby, retains the essential homological properties of FinHilby, the categories with
unbounded operators require the framework of restriction categories to handle partially-defined
morphisms. Section 3.2 reviews the theory of Hilbert complexes, due to Briining and Lesch
[17], to provide a suitable generalization of cochain complexes that accommodates unbounded
coboundary operators. Finally, Section 3.3 analyzes block operators between direct sums of
Hilbert spaces, establishing conditions under which these operators are closed or closable. To-
gether, these developments provide the categorical, homological, and operator-theoretic infras-
tructure for the cellular sheaf theory developed in subsequent chapters.
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3.1 CATEGORIES OF HILBERT SPACES

To define cellular sheaves valued in Hilbert spaces, we first clarify the relevant categories of
Hilbert spaces. The category of k-Hilbert spaces and bounded operators, denoted Hilby, is a well
studied category in the theories of categorical quantum mechanics [1, 10, 64], dagger categories
[62, 109, 110], and operator categories [44, 123]. We will also need a category of Hilbert spaces
with unbounded operators, Hilbg i, which is substantially less well-behaved. This category, with
its partially-defined maps, may be fruitfully studied through the lens of restriction categories
[26—28]. Other categories of Hilbert and Banach spaces have also been studied [79, 88], but are

not suitable for cellular sheaf theory.

3.1.1  The category of Hilbert spaces and bounded operators

Definition 3.1.1. The category of k-Hilbert spaces and bounded operators, denoted Hilby, con-

sists of the following data.
* Objects. The objects of Hilby are k-Hilbert spaces.
* Morphisms. A morphism A : X — Y is a globally-defined k-linear bounded operator.

Remark 3.1.2. The category Hilby has been extensively studied. Moreover, the categorical struc-

ture has recently been axiomatized by Heunen and Kornell [63].

Remark 3.1.3. Morphisms in the category Hilby are not required to respect the inner product
structure on each object, but merely the topologies they induce. Continuity has no regard for
orthogonality. Consequently, isomorphisms in Hilby are simply bounded linear bijections, not

unitary maps.

Hilby, is also a prototypical example of a dagger category, possibly first introduced by Burgin
under the name "categories with involutions" [18]. A dagger category is a category € equipped
with a dagger—a contravariant involutive functor (—) : @ — C° which is the identity functor
on objects. In Hilby, the dagger is given by the linear adjoint (—)*. Dagger categories are used
in the study of categorical quantum mechanics, where dagger compact categories form a general
setting for studying the underlying operations of quantum theory [64].

The extra data of a Banach space norm makes Hilby, less well behaved than Vecty, the category
of k-vector spaces with linear maps for morphisms. For example, Hilby fails to be an abelian
category. Perhaps the most straightforward way to see this is that for a morphism A : X — Y, we

have an isomorphism co-im(A) =~ im(A) if and only if R(A) is closed in Y.
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Nonetheless, Hilby, is almost abelian—it is a prototypical example of the recently defined con-
cept of an R*-category [87]. In a few words, an R*-category is an additive dagger-category whose
biproducts and kernels are dagger limits. They can be thought of through the following anal-
ogy; abelian categories are to abelian groups what R*-categories are to Hilbert spaces. As an
R*-category, Hilby is contained in several standard classes of weakly abelian categories. Hilby
is quasi-abelian in the sense of Schneiders [107, Definition 1.1.3], and hence is homological
[103], satisfying the five, nine, and snake lemmas, as well as admitting the homology long exact

sequence. Moreover, Hilby, is finitely complete.

Remark 3.1.4. One might object that morphisms in Hilby failing to respect the inner products
is an indication that Hilby is not the "correct” category of Hilbert spaces to work with. If one
wishes to avoid these problems, there are two clear options.

First, one could change the morphism from bounded linear maps to maps that respect the
inner product structure directly, such as unitary operators, isometries, or partial isometries. While
restricting to any of these classes of morphisms yields a valid category, it will not be adequate for
cellular sheaf theory. These classes of maps are too restrictive to make for an interesting category
of Hilbert spaces, and lack the necessary expressive power for applications of cellular sheaves.

Second, one could study Hilby as a dagger category per se. Following the way of the dagger [72],
to fully treat Hilby as a dagger category is to preserve the structure of linear adjoints whenever
possible. For example, while any continuous bijective linear map is an isomorphism in Hilby,
a dagger isomorphism is an adjoint-preserving isomorphism, which is exactly a unitary map.
While fruitful in other domains [64], treating Hilby as a dagger category is too rigid for the theory
of cellular sheaves; there are insufficiently many dagger-respecting limits (see Remark 4.2.3).
Moreover, the dagger perspective cannot accommodate unbounded operators.

3.1.2  Categories of Hilbert spaces and unbounded operators

We will also utilize categories of Hilbert spaces with unbounded and partially-defined operators.
Such categories are understudied in comparison to Hilby. We approach unbounded and partially
defined operators through two key categories of Hilbert spaces.

¢ Hilby j, the category of Hilbert spaces and partially-defined linear operators.

¢ CoreHilb i, where unbounded partial operators are required to respect certain subspace

containment relationships.

These categories of Hilbert spaces, which are best thought of as 2-categories, follow the ap-
proaches of Robinson and Rosolini’s categories of partial maps [101], Carboni’s bicategories of

partial maps [19], and Cockett and Lack’s restriction categories [26—28].
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Notation 3.1.5. Let A : X — Y be an unbounded operator with Dom(A) = V < X. To disam-
biguate the domain of A as an unbounded operator and the domain of A as a morphism in
a category, we use domain exclusively to refer the operator domain V, and source to refer the
object X.

Definition 3.1.6. The category of k-Hilbert spaces and partially-defined operators, denoted
Hilb i, consists of the following data.

* Objects. The objects of Hilbg i are k-Hilbert spaces.

* Morphisms. A morphism A : X — Y is a k-linear operator A with a specified domain
Dom(A) < X. Operators which map by the same rule on different partial domains constitute
distinct morphisms in Hilbg . When convenient, we will denote a morphism A : X — Y as
a pair (A, Dom(A)) to highlight this domain dependence.

¢ Composition. The composition of morphisms

xAvyBz

is the usual composition Bo A : X — Z with domain {x € Dom(A) : Ax € Dom(B)}.

Let A and B be a composable pair of closed densely-defined operators. Since B o A need not
be closed nor densely defined, we cannot restrict the class of morphisms to only closed densely-
defined operators. This difficulty, at least for densely-defined operators, can be partially mitigated
by including certain domain information in the objects and restricting the admissible ranges of

operators. This motivates our second category of Hilbert spaces and unbounded operators.

Definition 3.1.7. The category of cored k-Hilbert spaces, denoted CoreHilb y, is the following
category:

* Objects. Each object of CoreHilbyy is a pair (X, V) of a k-Hilbert space X and a linear
subspace V < X. We call V the core of the object (X, V);

e Morphisms. A morphism A : (X,V) — (Y,W) is a k-linear operator A with domain
Dom(A) 2 V such that A(V) € W. When convenient, we will denote a morphism A : X — Y
as a pair (A, Dom(A)).

¢ Composition. The composition of morphisms
X V) 5 (W) 2 (ZU)

is the usual composition B o A with domain {x € Dom(A) : Ax € Dom(B)}. By hypothesis,
V < Dom(BoA).
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Remark 3.1.8. We make a few remarks about these categories of Hilbert spaces and unbounded
operators.

1. One may form a full subcategory DenseCoreHilb ; induced by those objects (X, V) such
that V is a dense linear subspace of X. Consequently, all morphisms (and their composi-
tions) are densely-defined operators. This will be a convenient category to work in, as it
will ensure maps out of the object may be assumed to have a common dense domain. Un-
fortunately, since the composition of closed densely-defined operators need not be closed,
we cannot form a category of closed densely-defined operators with cores. Nonetheless, we
use ClDenseCoreHilb i to refer to the quiver of densely-cored Hilbert spaces and closed
densely-defined linear operators objects and morphisms.

2. Hilby embeds into Hilb i by proper inclusion. Moreover, Hilby embeds into the category
CoreHilb i in two different ways:

Y) > ((X,0) 2 (,0)),
Y) = (X,X) 2 (Y, Y)).

(X
(X

A,
A,
Neither of these inclusions are full, and the second inclusion lands inside of the quiver
ClDenseCoreHilbg .

3. Hilb  itself embeds into CoreHilby  by:

(X DY) - ((X,0) 25 (Y,0).

Similarly, there is a forgetful functor U : CoreHilb ;; — Hilbg ; defined by

U: (X, V) D (Y, W) - (X DY)

4. Hilby is a subcategory of TopVect,, the category of topological vector spaces with contin-
uous linear maps. On the other hand, Hilby ;. and CoreHilb, i are not subcategories of
TopVect;, as unbounded operators are discontinuous.

5. Taking adjoints is not a functorial operation on Hilbyj or CoreHilby o as not every un-
bounded operator admits a uniquely defined adjoint. Similarly adjoints are not functorial
on DenseCoreHilb ;. While every densely-defined morphism A : (X, V) — (Y, W) has an
adjoint, it need not be densely defined (and hence not a morphism in DenseCoreHilby i)
when A isn’t a closed operator. Therefore these categories are not dagger categories. How-
ever adjoints form a dagger-like structure on the quiver of Hilbert spaces and closed densely-

defined operators.
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Proposition 3.1.9. The embedding  : Hilby . — CoreHilby i and the forgetful functor
U : COI'eHilbollk - Hilbo’]k

form an adjoint pair v 4 U.

Proof. Let X € Hilbox and (Y, W) e CoreHilbg ;. We may define a natural bijection ®x (v, :
CoreHilb i (1(X), (Y, V)) — Hilbg i (X, U(Y, V)) by

Ox (v w)((Y,0) A (X V) = (Y A X).

It is straightforward to check this assignment in natural in X and (Y, W). O

Unlike Hilby, which is finitely complete, both Hilb ;. and CoreHilb i lack many finite limits.
For example, Hilbg i is missing certain pullbacks, as shown in the next example.

Example 3.1.10. Let X 2,22 Ybea cospan where Dom(A) and Dom(B) are proper subsets of
X and Y. One may try to form a pullback by defining K := {(x,y) : Ax = By} € X@Y, and form
the following square with projections for legs.

Y
|8
z

Consider another Hilbert space H and maps « : H — X and 3 : H — Y such that Bf = Ax.
There is a map ¢ : H — K such that txd = « and myd = B if and only if Dom(x) = Dom().

If this equality of domains does not hold, ¢(h) = (x(h), (h)) can only be defined on Dom(ex) N
Dom(B), and K fails to be a pullback.

Remark 3.1.11. A nearly identical argument can be used to show that the categories CoreHilb j
and DenseCoreHilb j fail to have certain pullbacks as well.

This lack of limits poses a problem for defining cellular sheaves valued in Hilbert spaces with
unbounded operators. For example, it becomes unclear how to define sections, which are usually
defined as limits. The theory of restriction categories, as elucidated by Cockett and Lack [26—28],
shows how to view certain limit-like constructions (including the proposed pullback square in
Example 3.1.10) as a weaker notion of limit in a certain 2-category. The key is to add the extra
structure of "restrictions," which model identity maps on partial domains.
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Definition 3.1.12 (Restriction category [26, Definition 2.1.1]). A restriction structure on a category
C is an assignment of a restriction idempotent® f : X — X for each morphism f : X — Y that that

satisfies the following axioms.
R.1 ff = f for all f.

R.2 f§ = gf for all arrows f, g with the same source.

R:3 g? = gf for all arrows f, g with the same source.

o~

R.4 §f = fo(gf) for all composable pairs of arrows.

o~

We call a pair (C, (—)) of a category and a restriction structure a restriction category.

The intended interpretation of a restriction structure is that f : X — Y is a partial function with
domain-of-definition Dom(f) < X, and the restriction idempotent f : X — X is the identity map

idx : x — x with domain Dom(idx) = Dom(f).

Proposition 3.1.13. Let A := (A,Dom(A)) : (X,V) — (Y, W) be a morphism in CoreHilbg . The
assignment A = (Ix, Dom(A)) defines a restriction structure on CoreHilby .

Proof. This is a straightforward computation of partial maps. For example, R.1 is confirmed by
observing (A, Dom(A)) o (Ix, Dom(A)) = (A, Dom(A)). The other properties are similar. O

Remark 3.1.14. Hilbg  and DenseCoreHilb . are also restriction categories with the same re-
striction. This is witnessed by their inclusions into CoreHilbyy, and the fact that Dom(A) =
Dom(A). In this section, we will mostly work with CoreHilb , as all results will similarly apply
to Hilb i« and DenseCoreHilb i by their inclusions into CoreHilb ;. as subcategories.

Definition 3.1.15. A morphism f: X — Y in a restriction category C is total if f = idx.

In CoreHilby i, the total morphisms are exactly those morphisms that are globally defined.
The total maps in € define a wide subcategory Total(C) < C.

Remark 3.1.16. Every restriction category C can be viewed as a 2-category in the following way.
The o-cells and 1-cells are exactly the objects and morphisms of C. If f,g : X — Y are parallel
morphisms in €, there is a unique 2-cell F : f = g if and only if f = gf. That is, exactly when f is
a restriction of g to a smaller partial domain.

Restriction categories come equipped with a notion of a restriction limit, which is a limit-like

construction in the corresponding 2-categories.

The restriction idempotent of a morphism f is usually denoted by f. We use f to disambiguate from the closure of an
operator.
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Definition 3.1.17 (Restriction limit [28, Section 4.4]). Let € be a restriction category, and J a
diagram. The restriction limit of a functor F : § — € is a cone pj : L — F(J) with total legs
that satisfies the following universal property. If qj : M — F(]) is a lax cone over F (meaning
forallf: I — Jin g, F(f)oqr = qjo (FF)\qI)), there is a unique arrow ¢ : M — L satisfying
pj o ¢ = qj o e, where e is the composite of all restriction idempotents qj.

Notation 3.1.18. When working in a restriction category C, we will use reslimF to denote the

restriction limit of a functor F: J — C.

Example 3.1.19. The pullback-like square constructed in Example 3.1.10 is a restriction limit
in Hilbg . In particular, the arrow ¢ : H — K defined by ¢(h) = («(h), (h)) with domain
Dom(a) n Dom(pB) satisfies mydp = x&P and ixdp = B&P.

Remark 3.1.20. We make a few remarks about restriction limits.

1. Restriction limits admit a natural interpretation as 2-categorical limits, where the triangles

M
12N

L= F()

commute up to a not-necessarily-invertible 2-cell A.

2. By the universal property of restriction limits, when a functor F : § — € admits a restriction

limit, the restriction limit is unique up to isomorphism.

3. When the functor F: J — C is valued in Total(C), the restriction limit of F in € is an honest
limit in Total(C).

Theorem 3.1.21. CoreHilby i admits all finite restriction limits.

Proof. Every restriction idempotent f in CoreHilb, j admits a section s and a retract r. Moreover, f
can be uniquely determined from the data of the section s or the retract r. This makes CoreHilbg i
a split retraction category [26, Section 2.3.3].

Next, Total(CoreHilby ) has a terminal object given by (0,0), and admits all pullbacks by a
similar construction to that in Example 3.1.10. Thus Total(CoreHilby ;) admits all finite limits
[84]. By [28, Proposition 4.12], CoreHilb, i admits all finite restriction limits. O

Corollary 3.1.22. Hilbg ; and DenseCoreHilby i admit all finite restriction limits.

Remark 3.1.23. Finite restriction limits in CoreHilbg i can be constructed in a manner similar to
the restriction pullback in Example 3.1.10. Given a finite diagram F : § — CoreHilb y, say that
x = (x) € @jeg F(J) is F-admissible if the following conditions hold.
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(i) For all morphisms f: ] — K in g, the coordinate xj € Dom(F(f)).
(ii) For all morphisms f: ] — Kin g, we have F(f)(xj) = xk.

Let L © @DjeyF(J) denote the collection of all F-admissible points. The zero section is always
F-admissible, so L is a linear subspace of the Hilbert space (P, F(J), and its closure L is a sub-
Hilbert space. Moreover, L forms a cone over F(J) with globally defined legs pj : (L, L) — F(])
given by coordinate projections. This is easily seen to be a restriction limit. Moreover, since L will
be dense in L, this construction of the restriction limit restricts to DenseCoreHilb .. Pushing
through the forgetful functor U : CoreHilbo ;. — Hilbg i generates restriction limits in Hilbg ;. as
well.

3.1.3 Additivity in restriction categories

We now briefly discuss additivity in restriction categories. While Hilbg 1 is not abelian (or even
pre-additive category), unbounded operators have a clear additive structure sufficient for some
homological algebra. Given parallel arrows A, B : X — Y, we may define an operator sum (A + B) :
x — Ax + Bx with domain Dom(A) n Dom(B). This sum operation gives the homset Hilbg (X, Y)
the structure of a commutative monoid. Moreover, this monoid admits a weak notion of an
additive inverse; for every operator A there is an operator (—A) such that A + (—A) = 0 with
domain Dom(A). This gives Hilb (X, Y) the structure of an abelian Clifford semigroup [25],
which form a subclass of inverse semigroups in the sense of Wagner [122] and Preston [98].

Definition 3.1.24. An inverse semigroup is a semigroup (S, -) such that for all x € S, there is a

1 1

unique x~' € S such that x = xx 'x and x~! = x"'xx~!. An inverse semigroup is a Clifford

semigroup if every element x € S is in a subgroup of the semigroup.

Remark 3.1.25. Composition of linear operators does not give the homset Hilb i (X, Y) the struc-
ture of a Clifford semiring. In general, the operators C(A + B) and CA + CB do not have the same
domain.

We now discuss additivity in a general restriction category C. For an object X € C, let D(X)
denote the set of restriction idempotents on X. D(X) admits the structure of a meet semilattice
with order e < f «— ef = fe = e and meet e A f = ef = fe.

Definition 3.1.26. Let A : X — Y be a morphism in a restriction category €. A corestriction of A
is a restriction idempotent A € D(Y) such that AA = A, and if e € D(Y) is a restriction idempotent
such that eA = A, then A < e.

We characterize a few properties of the lattices D(X) and coresetrictions with the following
lemma.
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Lemma 3.1.27. Let C be a restriction category. The following properties hold.
(i) For a composable pair of arrows BA, BA < A.
(ii) For a composable pair of arrows BA, if BA = A, then BA = A.

(iii) A morphism A : X — Y admits a corestriction if and only if \{e € D(Y) : eA = A} exists. In par-
ticular, if the semilattice D(X) is meet-complete for all X € C, then all morphisms admit corestrictions.

Proof. Let C be a restriction category.

(i) From the axioms of a restriction category, we compute BAA — BAA — BA. Therefore
BA < A.
(i) A =BA = AB/R, from which we conclude A = ABA = ABA. From (i), we recover BA = A.
(iif) This follows directly from the definitions of meets and corestrictions.

O

Definition 3.1.28. Let C be a restriction category. The domain category of C, denoted C, consists
of the following data.

* Objects. Each object of C is a pair (X, e) of an object X € € and a restriction idempotent
e € D(X).

¢ Morphisms. A morphism A : (X,e) — (V,f) is a C-morphism A : X — Y such that A = e
and fA = A.

e Composition. The composition (X, e) A, (Y, f) LN (Z,g) is given by the composition BA in
C. This composition is well-defined by Lemma 3.1.27.

Remark 3.1.29. The domain category € is not a restriction category. Instead, the partial domain
data is packaged into the objects directly. Moreover, the structure of morphisms in @ allows us to
only compose arrows that compose properly.

The presence of restriction limits in € guarantees the existence of certain classical limits and
colimits in €. This correspondence is mediated by the following forgetful functor.

Definition 3.1.30. Let U : ¢ — € denote the functor which acts by
U ((x, e) A (v, f)) =xAy.
Proposition 3.1.31. Let F: J — C be a finite diagram in C. If UF admits a restriction limit in C, then F

admits a limit in C.
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Proof. Let pj : L — UF(]) denote the restriction limiting cone in C. Let { € D(L) denote the re-
striction idempotent obtained by composing every restriction idempotent of the form UF(/oc)\op Is
where « : ] — ]’ is a J-morphism. Consider the cone qj : (L, {) — F(]) with legs q; = pjL.
Given another cone 17 : (M, m) — F(J) in C, there is a is a lift to a cone Ry : M — UF(J) in €
with the same legs. There is a unique C-morphism ¢ : M — L such that pj¢ = Rym. The map
tdp : (M, m) — (L, £) witnesses that vy : (M, m) — F(]) is a limiting cone. O

Corollary 3.1.32. If C is finitely restriction complete, then C is finitely complete. If € is restriction complete
and each semilattice D(X) is meet-complete, then € is complete.

Example 3.1.33. The domain category Ifiﬁ)ollk has pairs (X, V) of a Hilbert space X and a linear
subspace V < X for objects. A morphism A : (X, V) — (Y,W) in ﬁil\bo,lk isalinearmap A: X - Y
with domain Dom(A) = V and a range containment R(A) < W. The domain category Iﬁo,k
is a wide subcategory of CoreHilb, . Moreover, this category is easily seen to be categorically

equivalent to the category of k-vector spaces.
Definition 3.1.34. A restriction pre-additive category consists of the following data.
¢ A restriction category C.
¢ All morphisms admit corestrictions.
¢ Each collection of restriction idempotents D(X) forms a lattice.
e Each homset C(X,Y) admits the structure of an abelian Clifford semigroup.
We require that the following conditions hold.

(i) For each pair of parallel morphisms A,B : X — Y, the sum has restriction idempotent
A+B=AAB=ABand corestriction A+ B = A v B.

(ii) For parallel morphisms A,B: X - Yand C:Y — Z, if A, B < C, then C(A +B) = CA + CB.
(iif) For parallel morphisms A,B:Y — Zand C: X — Y, if C < A A B, then (A+B)C=AC+BC.
Proposition 3.1.35. If C is a restriction pre-additive category, the domain category C is pre-additive.

Proof. Since A = A + (—A) + A, condition (i) enforces that A = A A (j), and therefore A = (j)
Similarly, A = (j) In an abelian inverse semigroup, every additive idempotent o satisfies
o = —o. Hence every additive idempotent can be written as A + (—A) for some A € C(X,Y).
Given an idempotent «, it follows straightforwardly that A + (—A) = « if and only if A = &.
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The collection G := {A € C(X,Y) : A+ (—A) = «} forms an abelian subgroup of €(X,Y) with
identity «. Moreover, we may write

Gu ={A€CX)Y): A=a}
= C((X, &), (Y,idy)).
Let C((X, e), (Y, f)) be a homset in the domain category. Given parallel morphisms A, B : (X, e) —
(Y,f), wehave A+ B = AAB =e and A+B = A v B < f. Therefore C((X,e),(Y,f)) is closed
sums. Moreover, this homset is closed under inverses as e = (—A) and (—A) < f. Therefore

C((X,e), (Y,f)) is an abelian subgroup of C((X, e), (Y,idy)). The distributivity conditions (ii) and
(iii) ensure that composition is bilinear. O

Definition 3.1.36. A weak restriction zero-object in a restriction category C is an object 0 with
the following properties.

(i) 0is restriction terminal [28, Section 4.1]; for every object A there is a total arrow tA : A — 0
such that ty = idg and tgf = taf forall f: A — B.

(ii) 0 is initial in €; for each X, there is a unique total morphism !x : 0 — X.

(iii) The zero-morphism Oxy : X — Y is the map Oxy =!yvtx. For each object X, we require

Oxx = Oxx.

Remark 3.1.37. Zero morphisms are not annihilative on the left. Given a map g : X — Y, the
composition Oyzg = 0xz§, which need not be total.

Definition 3.1.38. Let X and Y be objects in a restriction pre-additive category C. A binary re-

striction biproduct of X and Y is an object X@ Y and a collection of four total maps
x : X—=>X®BY, v:Y->XBY, mx:X®Y->X, my:XeY->Y

such that the following conditions hold.

(i) Restriction product. X@® Y, equipped with its projection maps mx and 7y, is a restriction
product; for maps A : Z — X and B : Z — Y there is a unique map (A,B): Z — X@Y such
that AB = x(A, B), BA = my(A, B), and (A, B) = AB.

(ii) Weak restriction coproduct. X® Y, equipped with its inclusion maps tx and ty, is a weak
restriction coproduct?; for any maps A : X — Zand B: Y — Z, there is a unique morphism

2 We say "weak" to differentiate from Cockett and Lack’s notion of a restriction coproduct [28], which is simply a
coproduct.
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[A,B] : X®Y — Z such that [A,B]Juix = A and [A,B]iy = B, and the restriction [A, B] is

controlled componentwise:

(iif) Biproduct equations. We require that the following equations hold:

nixtx =idx, myty =idy, 7mxty =0yx, 7yix = Oxy.
We additionally require that tx7tx + ty7ty = idxgy-

Theorem 3.1.39. Let C be a restriction pre-additive category. If C has a weak restriction zero-object and
admits all binary restriction biproducts, then C is additive.

Proof. First, we show that € admits a zero object. Let 0 be the restriction zero-object in €. Since
0 is initial in C, idp : 0 — 0 is the unique restriction idempotent in D(0). For each X € € and
restriction idempotent e € D(X), eo! =!, where ! : 0 — X is the unique morphism from 0 to X.
Therefore there is a unique morphism ! : (0,idy) — (X, e) in €, and (0,idy) is initial. Meanwhile,
Proposition 3.1.31 ensures that (0,ido) is terminal in C.

Next, we show that & admits binary biproducts. Let (X,e) and (Y,f) be objects in €. The
morphism e ® f := txemx + Ly fmy is restriction idempotent on X® Y. We claim (X@Y,e®f) is a
biproduct in €. By the Proposition 3.1.31, (X®Y, e ®f) is a product. To check that (X® Y, e ®f)
is a coproduct, let A : (X,e) — (Z,g) and B: (Y,f) — (Z,g). Anymap ¢ : (X@Y,e®df) — (Z,g)
such that ¢pux = A and ¢y = B lifts to a morphism ¢ : X@Y — Z in C that satisfies the universal
property of the weak restriction coproduct. Moreover, the map [A,B] : X@Y — Z defines a map
[A,B] : (X@®Y,edf) — (Z, g) that satisfies the universal property of the coproduct. Therefore
(X®Y,e@®f) is a coproduct. Finally, the biproduct equations hold by the construction of e @ f.
Therefore C admits all finite biproducts.

Since C is pre-additive by Proposition 3.1.35 and admits all finite biproducts, C is additive. [J

3.2 HILBERT COMPLEXES

As seen in section 1.4.5, a cellular sheaf valued in an Abelian category naturally induces a cochain
complex. Since Hilby is quasi-abelian, it is straightforward to port results to cellular sheaves val-
ued in Hilbert spaces and bounded operators. However, to generalize to unbounded partially
defined operators, which do not form a quasi-abelian category, requires more care. We now dis-
cuss the theory of Hilbert complexes: a class of sufficiently well behaved cochain complexes
of Hilbert spaces with unbounded coboundary maps. Hilbert complexes were introduced by
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Briining and Lesch [17] to study elliptic complexes and de Rahm cohomology. Since their intro-
duction, Hilbert complexes have proved invaluable for studying partial differential equations [95,

96], finite-element exterior calculus [8, 65], and more.

Definition 3.2.1. A Hilbert complex (X*,V?*,°) is the data of a family of Hilbert space operators
{87 : X) — X1t} en with Dom(87) = VI, such that the following conditions hold.

(i) Each operator & is closed and densely defined.
(ii) R(&) < VI+! for all j.
(iii) 8+18)(x) = 0 for all j and all x € VI.

Notation 3.2.2. Despite the domain conditions, we will frequently abbreviate the Hilbert complex
(X*,V*,5°) to X°*, and draw the Hilbert complex as

0 1
x© 5—>X1 S

We say a Hilbert complex is finite if X) = 0 for all j sufficiently large. We say that a Hilbert
complex is bounded if each map &’ is a globally-defined bounded operator. For clarity, we adopt

the convention that X~! = 0, and 6! is the zero-map.

3.2.1 The Hodge decomposition

While not a cochain complex in an Abelian category, Hilbert complexes give enough structure to
recover analogues of key results like Hodge decompositions, cohomology groups, and Laplacians.
However, care must be taken to accommodate the fact that domains V* and ranges R*® := R(5°)

need not be closed linear subspaces.

Definition 3.2.3. Let (X*,V*,5°) be a Hilbert complex. A k-cocycle is a point in the kernel x €
ker(5%). We use 3%(X*) := ker(8¥) to refer to the Hilbert space of k-cocycles. Similarly, a k-
coboundary is a point in the image y € R(6%~1). We use B*(X*) to refer to the space of k-
coboundaries. Finally, let 8%+ denote the orthogonal complement of B¥ in X*. A point x € X* is
k-harmonic if x € B*L A 3%, We let H*(X*) denote the k-harmonic space.

Notation 3.2.4. When the Hilbert complex is clear from context, we reduce the notation to 3k
B* and Hk.

Remark 3.2.5. Since the kernel of a closed operator is closed, 3k is closed, and hence a Hilbert
space. Similarly, $H* is a Hilbert space as the intersection of two closed subspaces. B, on the
other hand, is only a linear subspace in general. When B* is closed for all k, we say that the
Hilbert complex (X*,V*,5°*) is closed.
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In a Hilbert complex, we get a decomposition of each X* in terms of the spaces of cobound-
aries, cocycles, and harmonic points. In particular, we may use the properties of direct sums and
orthogonal complements to compute:

Xk = 3k @3kt
_ [3k A (@@ %ki)] ®3ki
_ (31( N @) D (Sk N %kj_) (_BSKJ_
= Bk@H* @ 3"
This resulting decomposition X* = Bk @ $* @ 3% is known as the weak Hodge decomposition
of X*. When B¥ is closed, we recover the strong Hodge decomposition X* = B* @ $H* @ 3L

3.2.2  Morphisms and the domain complex

Care must be taken with domains to define morphisms of Hilbert complexes as chain maps.
In order to commute, we require that the chain maps respect the domains of the coboundary
operators of the Hilbert complexes.

Definition 3.2.6. Let (X®,V*,6%) and (Y*, W?*, 8} ) be Hilbert complexes. A morphism
o (X%, Ve, 8%) — (Y°,W?,8))
is a family of bounded, globally defined operators fX : XX — Y¥ that satisfy the following
conditions.
(i) f*(Dom(8%)) < Dom(5%) for all k.
(i) 8%fkx = 18k x for all x € Dom(5%).

Hilbert complexes and Hilbert complex morphisms form a category, HilbComp,. For some
homological algebra, Hilbert complex morphisms are not adequately structured. Diagram chases,
like those of the five and snake lemmas, cannot be performed; lifts of elements by the components
of a Hilbert complex morphism may fail to lie inside the domain of the coboundary operators.
To mitigate these difficulties, we introduce the domain complex.

Definition 3.2.7. The domain complex of a Hilbert complex (X*,V*,5%) is the Hilbert complex
(V*,V*,8%), where the domain V¥ is a Hilbert space with the graph inner product

& Yreky = 5 yxe + (8%, 8%y s
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It is straightforward to verify that the domain complex of a Hilbert complex is a well-defined
bounded Hilbert complex. Moreover, a Hilbert complex morphism f* : (X*, V*,06%) — (Y*,W*,8%)
ve (V5 V8, 8%) — (W*,W*,8)). By imposing
conditions on both Hilbert complex morphisms and their induced morphisms between domain

induces a morphism of the domain complexes f*

complexes, key results of homological algebra may be recovered through the following adapta-
tion of "exactness".

Definition 3.2.8. Let (X, Vx) SR (Y,Vy) & (Z,Vz) denote a sequence of Hilbert spaces X, Y, Z
containing linear subspaces Vx, Vy, Vz respectively, and bounded globally defined operators f :
X —Yand g:Y — Z such that f(Vx) < Vy, and g(Vy) < Vz. This sequence of maps is exact at Y
if R(f) = ker(g). The sequence is pair exact at (Y, Vi) if it is exact at Y, and fR(f‘VX) = ker(g‘vy).
That is, the pair (f, g) is algebraically exact on both the full Hilbert spaces, and on the underlying
linear subspaces.

This definition of exactness may be lifted to morphisms of Hilbert complexes by requiring
exactness gradewise.

Definition 3.2.9. Let (X*, Vy,5%) LAN (Y, Vy,08%) 9, (Z°,V5,6%) be a composable pair of Hilbert

k
complex morphisms. This sequence of maps is exact at (Y*,Vy,8%) if (X*, V) AN (Yk, VE) <,

(Z%,VX) is pair exact in each grade k.

3.2.3 Cohomology of Hilbert complexes

Hilbert complexes also come equipped with a notion of cohomology.

Definition 3.2.10. Let (X*,V*,5%) be a Hilbert complex. The k''-reduced cohomology of the
Hilbert complex is the Hilbert space quotient H* := 3% /Bk. When B is closed (5%~ has closed
range), we call 3}/B¥% = 3%/B¥ the kt'-cohomology.

The k"'-reduced cohomology always carries a Hilbert space structure as a quotient of Hilbert
spaces. Moreover, we have the following relationship between the k'-reduced cohomology and
the k-harmonic space.

Theorem 3.2.11. Let (X*,V*,8°) be a Hilbert complex. There is a natural unitary equivalence H* ~ $¥.

Proof. % = 3% A B*! is a closed subspace of 3. Let P : 3 — $* denote the orthogonal
projection onto the k-harmonic space. P induces a unitary isomorphism P H* - gk O

Unfortunately, one cannot easily derive an "honest" cohomology theory for an arbitrary Hilbert
complex. As discussed in Section 3.1, the category Hilby, is not an abelian category. In particular,
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if B* isn’t closed, the k'-cohomology 3*/B* will not be a Hilbert space, but merely a vector
space. This vector space is well defined, of course, but ceases to hold an obvious interpretation
for the Hilbert complex. Further, even if each B is closed and all cohomologies exist as Hilbert
spaces, it can still be difficult to interpret. For example, since each H* may be an infinite dimen-
sional Hilbert space, standard interpretations in terms of Betti numbers are not applicable.

One approach to interpreting the cohomology is through obstructions via exact sequences.
While the homological algebra of Hilbert complexes is well-studied for the de Rahm complex [7,
36], the general homological algebra of Hilbert is comparatively understudied [49].

Lemma 3.2.12 (Snake lemma for Hilbert complexes). Suppose we have a commutative diagram of
Hilbert spaces
ker(A) —— ker(B) —— ker(C)

A B C

0 X — sy z

X' /JR(A) —— Y'/R(B) —— Z'/R(C)

with morphisms in the top row given by restriction of f and g to the kernels of A and B, and morphisms in
the bottom row given by [x'] — [f'x'] and [y'] — [g'y’]. Further suppose that the rows (X, Dom(A)) SR
(Y, Dom(B)) % (Z, Dom(C)) LN (0,0) and O Oxt Ly 9 70 ape pair exact and exact respectively,
and each operator A, B, C is closed and densely-defined. There is a bounded globally-defined connecting

morphism d forming a bounded Hilbert complex
ker(A) —— ker(B) —— ker(C) -4, X' /R(A) —— Y'/R(B) —— Z'/R(C) .

This sequence is always exact at ker(B). Moreover, the following hold.

(i) If A has closed range, the sequence is exact at ker(C).

(ii) If B has closed range, the sequence is exact at X' /R(B).

(iii) If C has closed range, the sequence is exact at Y'/R(B).

Proof. The maps of the top and bottom row are all bounded and globally defined, and exactness
at ker(B) is automatic. To construct the map d, we perform the usual diagram chase of the snake
lemma; for z € ker(C), since g!Dom(B) is a surjection, there is a y € Dom(B) such that gy = z. Since
z € ker(C), we recover that By € ker(g’), and hence there is a unique x’ € X’ such that f’x’ = By’.
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Denote this point x’ by do(y), as it only depended on our choice of y. We define d(z) := [x'].
To check d is well defined, notice that d only depended on our choice of y € Dom(B) such that
gy = z. Take §j € Dom(B) to be a second such choice, and X’ = do({) to be the corresponding
point in X'. Consider the difference w = y — 4. The point Bw is still in the kernel of g’, so x’ — X’
is the unique point in X’ mapped to Bw by f’. w is in the linear space ker(g) » Dom(B), so there
is an « € Dom(A) such that fa = w. By the injectivity of f’, we recover Ax = x’ — X/, proving
x —x" € R(A) € R(A). Therefore d : ker(C) — X'/R(A) is globally well-defined.

Now we check that d gives the structure of a Hilbert complex. Suppose k € ker(B). To check
that gk € ker(d), it suffices to notice that do(k) = 0. Additionally, for z € ker(C) and a choice of

y € Dom(B) such such that gy = z, we may check that [f(do(y))] = [By] = [0] in Y/'/R(B).
To confirm that d is bounded, recognize that g : Dom(B) — ker(C) admits a bounded right

inverse when Dom(B) is topologized with the graph norm of B, and f’ : X’ — R(f") = ker(g’)

admits a bounded inverse when R(f’) is topologized as a sub-Hilbert space of Y’. The map

d: ker(C) — X’/R(A’) may be written as the composition of bounded operators

-1 B‘g*(ker(c»

ker(C) —2— Dom(B) ——" ker(g

n—1
/) (f) X/ 7t X//:R(A,) ,
which proves d is bounded.
Finally, in the case that R(A), R(B) and R(C) are respectively closed, these maps align with the

usual snake lemma in vector spaces, yielding exactness at the corresponding locations. O

Remark 3.2.13. This version of the snake lemma for Hilbert complexes is stronger than the ver-
sion from the abelian category structure of the domain category Hilbg 1. In the domain category,

the topological quotient X'/R(A) lacks a categorical interpretation. However, when all maps have
closed range, the algebraic and topological quotients agree, and the snake lemma provides the

same exact sequence.

We may now use the snake lemma to provide an interpretation for higher cohomologies like
H' for closed Hilbert complexes. Suppressing the domains and coboundary maps for notational
ease, let X*,Y*, and Z* be closed Hilbert complexes. Suppose we have a short exact sequence of

complexes
0-x oy 970 o

Applying the snake lemma gives a long exact sequence

HO(X®*) —— HO(Y*) —— HO(Z*) —— H'(X*) —— H3(Y*) —— -+
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The connecting homomorphism d : H%(Z*) — H'(Y*) can now be interpreted as the obstruction
to lifting a o-cocycle in Z* to a o-cocycle in Y*. In particular, every o-cocycle z° € Z° has a
preimage y° € Y° under ¢°. In general, y® will not be a cocycle, but its image y' = 59y° will
live in the kernel ker(g'). By exactness, there is a unique x' € X! such that f'x! = y'. Moreover,
d[z°] = [x'] € H'(X*), showing that the obstruction to y° being a cocycle lives in H'(X*). The
other cohomology groups H*(X*) can be interpreted in a similar manner.

3.2.4 Subcomplexes and relative cohomology

Definition 3.2.14. Recall that a morphism of Hilbert complexes f* : X* — Y* is a collection of
globally-defined bounded Hilbert space morphisms f* : X* — Y* such that f*(V*) < W¥ and

the following diagram commutes (with respect to the domain of 8%).

5k
Xk X, xk+1 o ...

fkl lfk-}—]

5k
vk O vkl

When each component (* of a Hilbert complex morphism t* : X* — Y* is an inclusion of a
sub-Hilbert space, we say that (X*,V*, 8%) is a subcomplex of (Y*, W*,5%).

Subcomplexes allow us to define the relative cohomology of the Hilbert complex. Suppose
(X*,V*,8%) is a subcomplex of (Y*,W*,5%). Each X* is a sub-Hilbert space of Y*, and we may
form a Hilbert space quotient Y*/X¥. The correspondence &% X YR/XK — Yk+1/Xk+1 defined
by &% X [y] — [6¥y] has domain D* = {[y] € Y*/X* : y € Wy} induces the relative Hilbert

complex
k
S YRXK % YR xR

The relative (reduced) homology of Y* with respect to X* is the (reduced) homology of this
complex, denoted H*(Y*, X*).

By Theorem 3.2.11, there is a unitary equivalence between the k'-reduced homology of the
relative Hilbert complex and the k''-relative harmonic space H*(Y*,X*) = H*(Y*,X*). By the
identification of Y*/X* ~ X*! the relative harmonic space $*(Y*,X*) can be identified with the
harmonic points y € H*(Y*) such that y € X*1. That is, H*(Y*,X*) is the collection of harmonic
points in Y* that vanish on X¥.
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3.2.5 The Hodge Laplacian

As a cochain complex, a Hilbert complex admits a Hodge Laplacian. This Laplacian (and its
associated Dirichlet problem) has been well-studied [8, 65], and has recently been linked to a
variety of coupling problems in physics [14]. To define the Hodge Laplacian, we begin with the
dual complex of a Hilbert complex.

Definition 3.2.15. The dual complex of a Hilbert complex is chain complex obtained by reversing
arrows via adjoints. We denote the dual complex by (X,, V{,d.), where Xy := X%, and dy =
(8%=1)* with domain V; < Xy. Hence the dual complex is a Hilbert complex (with descending
indices)

Xo <& x; 42

Remark 3.2.16. Due to the decreasing indexing, the dual complex to a Hilbert complex is a chain
complex instead of cochain complex. For finite Hilbert complexes, this difference is inconsequen-
tial, but the change is significant for infinite complexes. Moreover, the dual complex to a bounded
Hilbert complex is always bounded, and the dual complex to a closed complex is always closed

by the closed range theorem (Theorem 2.3.15).

Definition 3.2.17. Let (X*,V*,8*) be a Hilbert complex. The Hodge Laplacian of X* is the chain
operator £ := dd 4+ dd with graded components given by

LR = 8% Tdy + dyy 10~
This is a (generically) unbounded operator with domain
Dom(L*) = {x e VK n Vi : dixe VR and 8%x e Vi, ;).

Notation 3.2.18. We write the Hodge Laplacian the sum £ = £, + £_ of the up Laplacian
L¥ := dy18% and down Laplacian £* := §k~1d,.

Theorem 3.2.19. The kernel of the Hodge Laplacian is the harmonic space. That is, ker(L¥) = H*.

Proof. Each coboundary map is closed, and we may identify B+ = ker(dy). Consequently H* =
ker(dy) n ker(8%), from which it follows that $H* < ker(L*).

To prove the reverse inclusion, consider the up Laplacian and the down Laplacian separately.
We may check that both R(dy) L ker(8%~") and R(8%) L ker(dx,1), which forces ker(£¥) =
ker(dy) and ker(£%) = ker(8%). Moreover, the orthogonality of the weak Hodge decomposition
witnesses that R(8%~") L R(dy1), and consequently that R(£¥) L R(LX). Therefore the kernel
of £ = £k 4 LK is exactly the intersection ker(dy) N ker(8%) = Hk. O
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We immediately obtain the following corollary for the grade-zero Laplacian.
Corollary 3.2.20. The kernel of L° is exactly the kernel of &°.
Theorem 3.2.21. The Hodge Laplacian L£¥ is a positive operator.

Proof. Consider the block operator [5k—1 dy +1] : X1 @ Xy,1 — XK. This block operator is
closed and has dense domain V¥~ @ Vi 1. To verify this, suppose that (xn,yn) € vk-1 D Vi
is a sequence of points in the domain such that (xn,yn) — (x,y) € X¥71 @ Xy 11, and 6 Tx,, +
di;1Yyn — z in XK. Since R(6%~1) < ker(8¥), and ker(8%) L R(dy1), it follows that 6%~ 1x,, — z;

and dy;1Yyn — 2z separately in X*. 5%~

and dy are closed operators, so (x,y) € VK- T @ Vi,
and 8% 'x + dyx 1y = z1 + 2z = z. Hence [5k—1 dy. 1 | is closed.

Next, the following computation demonstrates that

dx

[‘Sk_] dk“]*: sk

with domain Vi n V¥; for (x,y) e VF '@ Vi | and ze Vi n V<

<[5k71 dk+1] (x,y),z> = (8%, z) + {(di11y,2)
= (x, dxz) +(y, 0xz)

=<<x,y>, o >

*
By von Neumann’s Theorem (2.5.11), it follows that £¥ = [5k—1 dk+1] [5k—1 dk+1] is a
positive operator. O

3.3 BLOCK OPERATORS OF HILBERT SPACES

A fundamental aspect of finite-dimensional linear algebra is the ability to represent a linear map
between direct sums of vector spaces by a block matrix—a matrix whose entries are themselves
matrices encoding maps between the vector space summands. While block operators generalize
straightforwardly for bounded Hilbert space operators, the theory is more subtle for unbounded
operators [92, 117]. We highlight and develop a few key results for bounded and unbound block
operators.
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Let {Xj}jej be a family of Hilbert spaces with a possibly infinite index set J. The direct sum
X := @je X; is the Hilbert space

{X = ()1 2%, < OO}

jeJ

equipped with the inner product
& yyx =D x5, 5.
jeJ

For finite index sets J, the direct product is a categorical biproduct in Hilby. However this is
not the case for infinite index sets; the direct sum fails to be either a product or a coproduct.
Nonetheless, for any summand X;j, one may factor the identity map I; : X5 — Xj as 75 o 1j, where
y : Xj — X is the inclusion of the j'th summand X; as X; @ @;,,;0, and 7; : X — Xj is the
projection x — x;.

Let {Xj}jej and {Yi}ier be Hilbert spaces with finite index sets I, ], and let X := (—Dje] X; and
Y := @;e1 Yi denote the direct sums. Given an operator A : X — Y with domain V := Dom(A), if
the domain V splits as V = @j V; with Vj c X;, there is an induced operator Ay : X5 — Y; for

i'#j

each pair (i,j) such that the following diagram commutes.

A
—

-

9

'*>Yi

X

The domain of Aj; may be taken to be Vj; := Vj. The collection of operators Ayj for i € I and
j € ] constitutes a representation of A as a block operator

[Aijlierje) : X — Y.

This block operator acts like matrix multiplication; given an input x € X, the image of [Ai;] on
i-component of Y is
(Ax); = > Ay
jeJ

The condition that the domain of A split over the summands of X is not always satisfied.
Consequently, not every unbounded operator A : X — Y admits a representation as a block
operator. The converse process of assembling a collection of operators between summands into a
block operator also has has domain subtleties. Given Hilbert space operators Aj; : X; — Yj, one
may always form a block operator [Aj;]. However, the domain on which [Aj;] may be defined can
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be arbitrarily small—possibly only {0}. This can even be the case for unbounded operators with
finite index sets I and ]. Even when [Aj;] is a well-defined operator with a dense domain, it may
fail to have essential properties like being closed. This section is dedicated to exploring when
such block operators are well-defined Hilbert space operators, and when they are well behaved.

3.3.1 Finite block operators

We restrict our attention to finite block operators where I and | are finite index sets. Fix n,m e
IN> 1, Hilbert spaces X = X; @--- @ Xy and Y = Y1 @--- @ Yy, and operators Ayj : Xj — Yi with
dense domain Vi; < Xj. The theory of 2x2 block operators, their properties, and their spectra
have been well developed. For example, see [21, 48, 117], the last of which has applications to
mathematical physics, fluid dynamics, and quantum mechanics. Several of the results in this
section are generalizations of the work of Tretter [117].

When each block operator Aj; is bounded and globally defined, the induced finite block oper-
ator is well-behaved.

Proposition 3.3.1. Suppose each Ay : X; — Yi is a globally-defined bounded Hilbert space operator. The
finite block operator A := [As;] has the following properties.

(i) A is globally-defined and bounded (and hence closed).
(ii) The linear adjoint of A is given by [Ay]* = [Af].
(iii) The composition of such bounded finite block operators is given by matrix multiplication.

Proof. Using the Cauchy-Schwartz inequality and the triangle inequality, it can be shown directly
that the operator norm of A is bounded above by

n m
|Allop < | D5 D) 1442,
i=1j=1

proving that A is bounded. Once working with a globally-defined bounded operator the other
results are direct computations. O

When the Aj; maps are unbounded and partially defined, analysis of block operators be-
comes substantially more complex. We first investigate the domain of definition. For a fixed
j € {1,...,m}, the common core of the operators Ayj,..., Ay; is the intersection \7)- =i, Vij.
Going forward, we will always take this to be the domain of a block operator [Aj;] over finite

The maximal domain of definition for the block operator A = [Aj;] is the direct sum @

index sets I, ] unless otherwise stated. We get the following proposition for free.
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Proposition 3.3.2. The finite block operator [Ay;] is densely defined if and only if the collection of operators
{A1j,...,Anj} has a densely-defined common core for each j € J.

Remark 3.3.3. For globally-defined operators Aj; (bounded or unbounded), the resulting finite
block operator [Aj;] is globally defined.

For the remainder of this section, we will always assume that A = [Aj;] is densely defined.
Even when [Aj;] is known to be densely defined, unbounded block operators have subtleties
that must be navigated. We enumerate a few of those subtleties here.

1. If A is closable, the closure A need not admit a block operator structure.

2. Moreover, when A is closable, the adjoint A* # [A;"i] in general. The operator [A;"i], known
as the formal adjoint, need not even be densely defined when A is closable [91, Example

6.5].

3. Given block operators A = [Ay] : X — Y and B[Byi] : Y — X, one may form a block
operator C = [Cy;] with Cyj = >;; BxiAjj. This operator, defined with it’s maximal domain
is an extension BA < C. In general, these domains will not agree, and the containment will

be strict.

3.3.2 Closable and closed block operators

To determine when [Aj;] is closed or closable is more challenging. There is not a clear way to
provide necessary and sufficient conditions in terms of properties of the underlying Aj; maps. In
particular, it is not the case that [Aj;] is closed (resp. closable) whenever each block Ajj is closed
(resp. closable), as illustrated by the following example.

Example 3.3.4. Let A : 0?(IN;R) — ¢2(IN;R) be the operator defined by A (Z] X; ej) = (2351%5€5),
where e; is the j" standard basis element, with domain Dom(A) = {x : Ax € {(N;R)}. A is a

diagonal operator, and hence is closed. Consider the block operator
A= [A _A] C2(N;R) @ 2(N;R) — (N;R),

with domain Dom(A) @ Dom(A). Fix x = ]Te)- € 0?(IN;R) where e; is the j* standard basis

element, , and let x™ = Z)lel }Tej. Notice that (x™,x™)T — (x,x)7 in ?(IN;R) @ (N R), and
A(x™,x™) = 0 for all n, forming a constant sequence. The limit (x, x)T is not in the domain of A,

showing that A is not closed.
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The remainder of this section is dedicated to determining when a finite block operator is
closed or closable. We begin with two general purpose lemmas. A first way to force a finite block
operator A be closed is by controlling the graph norm.

Lemma 3.3.5. Suppose each Aij is a closed (resp. closable) operator. If there is a C > 0 such that

for all x e Dom(A), then A = [Ay;] is closed (resp. closable).

HAinj |2 < C?[[(x, A%)[Fa)

||M3

Proof. We prove the "closed" version of the lemma; the "closable" version is similar. Suppose
(x(™), Ax(™)) is a Cauchy sequence in the graph T'(A). Both x™) and Ax(™) are Cauchy in X
and Y respectively, and thus have limits x € X and y € Y respectively. By hypothesis, for each
i e I and j € J, the sequence Aijxgn)
n)

is Cauchy in n, and converges to a yi; € Y;. Moreover,
xj = limp o0 xg is in the domain Vj; and satisfies Ajx; = yij since Ajj is closed. It follows that

x € Dom(A) and Ax = y. Hence I'(A) is complete and A is a closed operator. O

Our second general lemma simplifies the problem by allowing us to check closedness row by
row.

Lemma 3.3.6. Let A = [Ay;] : X — Y be a finite block operator. Let Ry = [Aﬂ Aim] denote the
i row of A. If each R : X — Y; with domain Dom(R;) = Dom(Ai1) ®---@®Dom(A;n, ) is closed (resp.
closable), then A is closed (resp. closable).

Proof. Note that Dom(A) = (); Dom(R;) is contained in the domain of each row. Let x™ — 0
denote a convergent sequence sequence in Dom(A) such that Ax™ — y. If R; is closable, then the
ith coordinate yi = 0. Therefore if each R; is closable, then A is closable.

Similarly, let x™ — x denote a sequence in Dom(A) that converges to a point x € X, and
Ax™ =y. If R; is closed, then x € Dom(R;), and Rix = y;. Consequently, if each R; is closed, then
A is closed.

O
Remark 3.3.7. Note that this results also holds if we take the domain of R; to be Dom(A).

Remark 3.3.8. If R; is closable, then each block Aj;j of R; is closable [91, Corollary 3.4]. It follows
that in order to apply this lemma, it is necessary (but not sufficient) that every entry of A is
closable. However, it is not the case that all blocks of a closable block operator are closable [91,
Remark 4.4].
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While these lemmas provide practical criteria to check if a block operator is closed or closable,
they do not provide any insight into how to pick blocks Ai; such that [Aj;] is closed. Looking at
blocks, it is not obvious when the summability condition, nor row-wise closability are satisfied.
Thankfully, there are a variety of block-wise conditions under which we can ensure that the finite
block operator A is closed. One of the most simple involves having enough bounded operators

in the block operator.

Proposition 3.3.9. Let A = [Ay;] be a finite block operator such that each row contains at most one
unbounded operator—all other entries are bounded and globally defined. If each unbounded operator is
closed (resp. closable), then A is closed (resp. closable).

Proof. Let x™) be a sequence in Dom(A) such that x(™) — x € X. Suppose y™ := Ax(™) — ye Y.
For each row index i, let j; denote the column-index of the entry in the ith row that is unbounded.
For a fixed i we may write

ygn) — Z Aijxgn) = Aijixg?).

i#3

Taking the limit as n — o0 on the left hand side yields yi — >J; ;. AijXj. On the right hand side,
since Ayj; is closed, we recover xj; € Vij,. It follows that yi = >; Aijx;. Repeating this argument
for each i shows that A is closed. The proof for the closable case is similar. O

Another way to enforce that a finite block operator [Aj;] is closed is to impose conditions of
the ranges of the underlying blocks.

Proposition 3.3.10. Let A = [Aj;] be a finite block operator with each Ay; a closed operator. Let Ryj :=
R(Ai;) denote the closure of the range of Asj. If the following conditions hold for each i, then A is a closed
operator.

(i) The internal direct sum Rij + - - -+ Rim S Yi is a closed subspace.

(i) Rij N Ry = {0} whenever j # k.
In particular, these conditions hold when the range-closures {Ri1, ..., Rim} are pairwise orthogonal.
Proof. Let x™) be a sequence in Dom(A) such that x(™ — x € X. Suppose y(™ := Ax(™) — ye Y.

Let Pij : @®; Rij — Ri; denote the orthogonal projection operator onto the Rij component, and let

A; : X — Y; denote the block operator defined by the ih row of A. Since Pi; is bounded, in the
i" row we may compute:
gy = T A x(™)
Piyi T%l_r}rgo PijAix
()

= lim Ai]'X~
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Since Ajj is closed, x; € Vij, and Pijy; = Ajjxj. Applying this argument to each row individually
shows x € Dom(A) and Ax =y, proving that A is closed. O

Remark 3.3.11. Under the hypotheses of Proposition 3.3.10, if each operator Ai; has closed range,
then A has closed range as well.

Definition 3.3.12. Let X, Y, Z be Banach spaces, and let A : X — Y and B : X — Z be operators. A
is relatively bounded with respect to B (or simply B-bounded) if Dom(B) < Dom(A), and there

are constants a,b > 0 such that
[Ax]ly < afx]x +b[Bx|z
for all x e Dom(B). The infimum
b :=inf{b > 0 : 3a > 0 witnessing the relative bound}

is called the relative bound of A with respect to B.

Definition 3.3.13. Let A = [Ajj] be an n x m finite block operator with n > m. A is diagonally
dominant of order r if for all i < n and j # 1, the operator Aj; is Ajj-bounded with relative
bound 65 < 1. That is, each entry of each column is relatively bounded (with relative bound < )

by the diagonal entry in the column.

Proposition 3.3.14. Let A = [Ay;] be an (m + k) x m block operator with k > 0. If A is diagonally
dominant of order (mk + (m —1)?)
then A is a closed (resp. closable) operator.

Vand Ay is a closed (resp. closable) operator for each 1 <1 < m,

Proof. Write A = D + B where D and B are the (m + k) x m block operators consisting of the
diagonal and non-diagonal entries of A respectively. By the closed operator form of the Kato-
Rellich theorem [73, Theorem IV.1.16], to prove that A is closed, it will suffice to prove that D is
closed and that B is D-bounded with relative bound & < 1.

D is closed immediately by Proposition 3.3.10. To show that B is D-bounded with relative
bound 6 < 1, we use the relative bounding hypothesis and a remark in section V.4.1 in [73] to
pick a pair of constants a,b > 0 with b < (mk + (m —1)2)~! such that for each 1 <j < m and
x; € Dom(Aj;),

A2 < | + bl Aj12.
Next, write B in blocks
Bo
B,

B =
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where By is an m x m block operator with zero diagonal, and B is k x m. For By, compute:

m 2

[Box|? =

i=1

DA

j#L

m

< 2 2m= DAy

o
Il

-
-

RN
e

(m—1) (a|x;|* + b Aj;x;[2)

/A
AnaE

,_.
I
-
-
BN
o

I
NgE

(m—1)% (alxi|* + b|Awixi]?)

Il
-

m— 1)za\|x|\2 + (m— 1)2bHDx||2 .

—~~ o

Working with By, we similarly compute:

m+k m 2
IBix|2 = > 1] Ayx
i=m+1 [j=1
m+k m )
< ) D m|Ayx|
i=m+1j=1
m+k m
2 2
< >0 D m(alx)?+blAj %)
i=ma1j=1

m
> mk (afxi|* + bl Auxi]?)

i=1

= mka|x|? + mkb|Dx|?.
Letting C := (mk + (m — 1)?), combining these computations yields:

|Bx|? = [Box|* + [Bix]?
< Ca|x|? + Cb|Dx|*.

Since bC < 1 by hypothesis, applying the Kato-Rellich theorem proves that A = D + B is a closed
operator. ]

Remark 3.3.15. The requisite bound can be improved by observing that the relative bounds
within each column trade off against each other. That is, if the operators in column j are Aj;-
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bounded with a smaller relative bound, then the operators in column j’ # j are allowed to have
a larger relative bound. See [117, Theorem 2.2.8] for details.

Remark 3.3.16. Diagonal dominance, while essential for the previous argument, is a more restric-
tive condition than is needed. By rearranging the order of the summands in X and Y, any block
operator where every column has a dominant operator (with the required relative bounds), each
living in a distinct row, can be rearranged into a diagonally dominant operator.

Remark 3.3.17. Given an n x (n + k) block operator A = [Ay;] with more columns than rows,
we may still apply Proposition 3.3.14 through a padding argument. Extend A to a square block
operator

A=
0
This extended operator is closed (resp. closable) if and only if A is closed (resp. closable). How-
ever, A can only be diagonally dominant when the entries in the columns of index j > n are all
bounded operators (and hence are relatively bounded by 0).

Yet another way to force a finite block operator to be closed is to essentially combine the
hypotheses of Proposition 3.3.10 and Proposition 3.3.14.

Definition 3.3.18. Let A = [A;j] be an n x m finite block operator. The i row of A is row
dominant of order r if for all i,j, the operator Aj; is Ajyj-bounded with relative bound &;; < .
That is, each entry of each column is relatively bounded (with relative bound < r) by the entry

in row ig.

Proposition 3.3.19. Let A = [Ay;] be an n. x m block operator. Let iy be a row index, and let Rj :=
R(Asiy;) denote the closure of the range of Ayj. The finite block operator is closed (resp. closable) if the
following conditions hold.

(i) Row i¢ is row dominant of order 1/m.
(i) Each Ayj is a closed (resp. closable) operator.
(iii) The closed ranges {R;j}; : 1 <j < m} are pairwise orthogonal in Y.

Proof. Without loss of generality, suppose iy is the top row of A. Write A as A = Ay + B where
Ay is the top row of A with all other entries zeroed out, and B is A with the top row zeroed out.
By Proposition 3.3.10, Ay is a closed operator.

Again, pick a,b > 0 with b < 1/m such that for each Aj; withi > 1,

A% < alx;|? + bJA1x; )%
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We now compute:

2

m
D Aux

j=1

n
IBx|* = >

i=2

m

2
Z m[Aix;

n
D= ]

I
N
=

HM:

m

2 2
Z m(afx;j[= +bA;%;]°)
= maHtz + mb|Aox]?.

Since mb < 1 by hypothesis, the Kato-Rellich theorem again proves that A = Ay + Bis closed. [

To conclude this section, we summarize a few ways to enforce that a block operator be closed

or closable.
¢ Ensure there is at most one unbounded operator per-row.
¢ Ensure the images of the operators in each row are orthogonal.
¢ Check for a dominant operator in each column, each living in a distinct row.

¢ Check for a dominant row containing operators with orthogonal images.
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4

CELLULAR SHEAVES OF HILBERT SPACES

Having established the necessary categorical and operator-theoretic foundations in Chapter 3, we
now turn to the central construction of this thesis: cellular sheaves valued in Hilbert spaces. This
chapter develops a systematic theory of cellular sheaves valued in the category Hilbg i of Hilbert
spaces and unbounded operators. The passage from finite to infinite dimensions introduces fun-
damental complications that require careful treatment. When restriction maps are unbounded
and partially defined, the composition of morphisms requires precise domain bookkeeping, the
associated cochain complexes may fail to satisfy the hypotheses of a Hilbert complex, and even
basic sheaf operations such as the sheaf hom become problematic.

We address these challenges through a two-stage approach. Section 4.1 introduces pre-Hilbert
sheaves as the most general cellular sheaves valued in Hilbg i. Section 4.2 and Section 4.3 de-
scribe the sections and associated cochain complexes of pre-Hilbert sheaves. While pre-Hilbert
sheaves generalize weighted cellular sheaves directly, they may exhibit pathological behavior:
their coboundary operators need not be closable, their cohomology groups may fail to exist, and
their spectral theory may be ill-defined. Section 4.4 identifies the additional hypotheses necessary
to obtain well-behaved objects, leading to the definition of Hilbert sheaves proper. A pre-Hilbert
sheaf J : P — Hilbg , qualifies as a Hilbert sheaf when its associated coboundary operators §*
are closable, ensuring that the cochain complex forms a genuine Hilbert complex in the sense of
Briining and Lesch [17].

The remainder of the chapter develops the fundamental constructions and properties of Hilbert
sheaves. We introduce two distinguished classes of Hilbert sheaves that merit special attention:
bounded Hilbert sheaves, where all restriction maps are bounded operators, and closed Hilbert
sheaves, where all coboundary operators have closed range. These classes exhibit particularly fa-
vorable properties; bounded sheaves admit normalization under suitable conditions, while closed
sheaves possess honest (rather than reduced) cohomology groups. Throughout, we illustrate the
theory with concrete examples, including sheaves arising from differential operators on mani-
folds and block operator constructions.
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4.1 PRE-HILBERT SHEAVES

We now extend the scope of weighted cellular sheaves from finite dimensional Hilbert spaces to
arbitrary Hilbert spaces. The most direct generalization yields what we call pre-Hilbert sheaves—
functors on GACs valued in the the category Hilb ;. of Hilbert spaces and unbounded operators.
While these objects arise naturally and many fundamental constructions from weighted cellu-
lar sheaf theory carry over, the unboundedness introduces complications that will necessitate

additional hypotheses in subsequent sections.

Definition 4.1.1. A cellular pre-Hilbert sheaf (or simply a pre-Hilbert sheaf) is a cellular sheaf
3 : P — Hilbg i (as per Definition 1.4.1) with grade-wise finite domain P, valued in the category

of Hilbert spaces and operators. In particular, it consists of the following data.
¢ A grade-wise finite graded acyclic category P that admits a signed incidence structure e.
* For each object o € P, a Hilbert space J(o) called the stalk over o.

¢ For each indecomposable morphism f : 0 — 7 in P, a Hilbg x-morphism F¢ : F(o) — F(7)

called the restriction map over f.
¢ All other morphisms in the image of J are determined by composition.

Remark 4.1.2. Pre-Hilbert sheaves directly generalize weighted cellular sheaves, which are valued
in the category FinHilby of finite dimensional Hilbert spaces [54, Section 3.1]. In FinHilby, all
operators are bounded and globally defined.

Remark 4.1.3. The "pre" prefix is not meant to invoke pre-Hilbert spaces; each stalk of a pre-
Hilbert sheaf is an honest Hilbert space. We will soon see that extra hypotheses are needed to
ensure that a pre-Hilbert sheaf behaves in a manner similar to a weighted cellular sheaf. It is only
under those additional hypotheses that we will call a cellular sheaf a "Hilbert sheaf". In short,
"pre-Hilbert sheaf" should be parsed as "pre-(Hilbert sheaf)", not as "(pre-Hilbert) sheaf."

Several essential concepts and constructions on weighted cellular sheaves can be straightfor-
wardly adapted to pre-Hilbert sheaves.

4.2 SECTIONS

Definition 4.2.1. Let I : P — Hilbg i be a pre-Hilbert sheaf, and let Z < P be a subcategory of P.

The space of sections over Z is the restriction limit

N(%;F) := reslim F|,
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where F|, is the restriction of F to the sub-category 2. When 2 = P, we recover the space of
global sections I'(¥) := I'(P; F).

Since Hilbgj admits all finite restriction limits, spaces of sections are always well-defined.
Moreover, since finite dimensional subspaces of Hilbert spaces are always closed, when J is
valued in the subcategory FinHilb; < Hilby i, these restriction-limit sections exactly recover the
usual spaces of sections of a weighted cellular sheaf.

Like weighted cellular sheaves, the spaces of sections of a pre-Hilbert sheaf admit a nice char-
acterization through the construction in Remark 3.1.23. Given a sub-category Z < P, an & ‘Z-
admissible point x is a choice x; € F(o) for each object 0 € Z such that whenever f: 0 — T is
a Z-morphism, then F¢(xg) = xr. An F|,-admissible point can thus be interpreted as a locally
consistent choice of data in each stalk. The space of sections I'(Z; F) is the closure of space of
F|,-admissible points.

Remark 4.2.2. When J : P — Hilby < Hilbg i has all bounded and globally-defined restriction
maps, all restriction limits agree with the usual limits in Hilby,.

The space of global sections of a pre-Hilbert sheaf 7 : P — Hilbg i is the restriction limit
reslim F. That is, I'(J) is the closure of the space of F-admissible points; choices x, € F(0) for
each object 0 € P such that whenever f : 0 — T is a P-morphism, then F¢(xs) = xr. There
may be global sections which merely are limits of sequences of F-admissible points, but are not
themselves F-admissible.

As an object in Hilby , the space of global sections I'(J) comes equipped with a Hilbert space
inner product. However, this inner product is non-canonical; the structure is merely defined up
to isomorphisms, or equivalently, up to the size of a Hilbert space basis. In particular, the space
of global sections is not defined uniquely up to unitary isomorphism.

As constructed via restriction limit, I'(¥) inherits its inner product structure as a subspace

N < @ F(o).
oeP
While this is a legitimate construction of I'(¥) as a Hilbert space, there is a preferable construction.
We present this construction for global sections, but a similar construction holds for all spaces
of sections. Every F-admissible point x € @ .y F(0) is uniquely determined by a choice of a
point x; € F(0) for each object o € P of rank r(0) = 0; all other values x. can be determined by
applying restriction maps. We may pare off this superfluous information, and instead identify
x as a point in C°(P,JF) = ®Dr(5)=0 F(0). The closure of this set of F-admissible points (with
different cone-legs) also satisfies the universal property of the restriction limit reslim ¥, and can
be identified as the space of global sections. The difference between these two constructions of
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I'(F) is entirely analogous to the construction of a pullback as a cone over a cospan vs. as a
commutative square.

Going forward, we will always identify I'(J) with the second construction, and the Hilbert
space structure it receives as a subspace of C°(P; 7). This identification is advantageous for at
least two reasons. First, as we will see, this aligns better with the Hodge theory of Hilbert com-
plexes. Second, when necessary, it will allow us to safely consider pre-Hilbert sheaves whose
underlying categories P have infinitely many objects. Provided P is locally finite and has at most
finitely many objects of each rank, C°(P;JF) will be a Hilbert space and all arguments will go
through without extra work.

Remark 4.2.3. It has been observed [52, 54] that it would be preferable to use the technology of
dagger limits [62]—which define limits in dagger categories up to unitary isomorphism—to define
spaces of sections. This is, unfortunately, not possible in the dagger category Hilby. As shown by
Heunen and Karvonen, Hilbj, does not admit all dagger limits; it does not even admit all dagger
pullbacks [62]. Moreover, By the construction of dagger limits, when a pre-Hilbert sheaf J valued
in Hilby does admit the construction of I'(F) as a dagger limit (such as when all restriction maps
are dagger-monomorphism), this dagger limit does not agree with either proposed construction
of I'(F). However, the inclusion of I'(F) < CO(P;F) is a dagger kernel in the sense of Heunen and
Jacobs [61].

4.3 THE ASSOCIATED COCHAIN COMPLEX

Given a pre-Hilbert sheaf I : P — Hilb ;, we may form an associated cochain complex of Hilbert

spaces
(C*(,F), §%) == CO(7; ) & (7, ) & () &

with k-cochains C*(?; ) and k-coboundary maps 8% : C¥(P; F) — C**1(P;F) defined by:

CHP; F) = @ F(o),

r(o)=k
(%)= > e(f)Fs(xo).

o4 T
fio-T

The operator 8k is the block operator [S‘T‘,U] where o and T range over objects of P of rank k and
k + 1 respectively. The block 8% , is given by

8k 5= 2 e(f) s,

fio—oT
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and has domain Dom(S‘T‘,G) = (.o« Dom(F¢), where the empty sum is understood to be
the globally defined zero-operator. The domain of the block operator 8k is therefore given by
®r(o)=k (N Dom(8E ;) € B, )=k F(0)-

This is a "cochain complex" in the sense that $%*18¥ is the zero-operator on its domain {x €
Dom(8%) : 8§%(x) € Dom(6%+")}. This can be checked by repeating the argument in the proof
Proposition 1.4.8. Many important properties from weighted cellular sheaves are preserved.

Proposition 4.3.1. The kernel ker(éoo) is exactly the set of F-admissible points. Moreover, the closure of
the kernel is the set of global sections T'(F).

In general, the cochain complex (C'(ﬂ’, F), S') will not be a Hilbert complex. There is no
guarantee that any of the following conditions hold.

1. 8% is densely-defined for all k.
2. §%is closed for all k.
3. R(8%) < Dom(8%1).

Unless we have these properties, the cochain complex associated to a pre-Hilbert sheaf will not
be a Hilbert complex. Consequently, we will not have access to the (weak) Hodge decomposition
and (reduced) cohomology. Moreover, since §* need not be a closed densely-defined operator, the
adjoint (8%)* may not be densely-defined (or even exist!) in general, preventing the existence of
a Hodge Laplacian. We must restrict to a better behaved collection of cellular sheaves of Hilbert
spaces to ensure these qualities. This leads to the following definition.

Definition 4.3.2. A Hilbert sheaf is a pre-Hilbert sheaf 5 : P — Hilbg . whose associated cochain
complex (C*(?,7), §*) has the following properties.

(i) 8k is densely-defined and closable for all k.
(i) R(8%) < Dom(5%+1) for all k.

This definition is synthetic in the sense that a Hilbert sheaf is defined to be a pre-Hilbert sheaf
with exactly the properties we desire; the required properties are not of the underlying functor
3 : P — Hilbg x, but of the associated cochain complex. However, the definition gives no concrete
method for determining if a pre-Hilbert sheaf is a Hilbert sheaf. This is partly out of necessity; it
is very difficult to give clear and concise collections of necessary or sufficient conditions for a pre-
Hilbert sheaf to be a Hilbert sheaf. Moreover, most pre-Hilbert sheaves (with "most" understood
in an informal sense) are not Hilbert sheaves. As witnessed in Section 3.3, it is very difficult to
ensure that a block operator is closable.
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4.4 HILBERT SHEAVES

A Hilbert sheaf 3 : P — Hilbg x has two distinct associated cochain complexes; first there is
the usual associated cochain complex as constructed in the previous subsection. As with a pre-
Hilbert sheaf, this may-or-may-not be a Hilbert complex. Second, there is an associated Hilbert
complex (C*(P,F), §°), where 5% := 8k is the closure of the coboundary operator 5%. When the
associated cochain complex is itself a Hilbert complex, we say the Hilbert sheaf is proper.

The Hilbert complex (C‘(fP, F), 6‘) associated to a Hilbert sheaf F : P — Hilbg x is the better
analog of the usual cochain complex of a weighted cellular sheaf. In particular, since ker(5°) =

ker(89), the kernel of the coboundary operator §° is exactly the space of global sections.

There are two special classes of Hilbert sheaves worth extra attention. First, a Hilbert sheaf
J : P — Hilby < Hilby i where every restriction map is globally defined and bounded will
generally be better behaved than its unbounded cousins. We call such a Hilbert sheaf bounded.
On the other hand, when each coboundary operator 5* has closed range (hence yielding honest

cohomology instead of merely reduced cohomology), we say that a Hilbert sheaf is closed.

4.4.1  The category of Hilbert sheaves

We may form a category HilbShvy (P) of Hilbert sheaves on a GAC P as a subcategory of the
functor category [P, Hilbg x].
Definition 4.4.1. The category HilbShv; (P) consists of the following data.

* Objects. Each object of HilbShvy (P) is a Hilbert sheaf I : P — Hilbg x.

* Morphisms. A Morphism of Hilbert sheaves is a natural transformation ¢ : § = G be-
tween Hilbert sheaves such that each component ¢, for 0 € P is a bounded globally-
defined linear operator satisfying ¢(Dom(JF)) < Dom(G¢) for each covering morphism f
with domain o in P.

* Composition. Composition is the usual composition of natural transformations.

Note that the underlying operators in a morphism of Hilbert sheaves must be globally defined
and bounded. This condition ensures that Hilbert sheaf morphisms induce a morphism of Hilbert
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complexes. Suppose ¢ : F — G is a morphism in HilbShvy(P). There is an induced map of
Hilbert complexes

K (Pp.
o) T o)
d)kl ¢k+]l
K 8(P;9) K+1
- —— C¥(P;9) Ck+1(P;8) —— ---

where the map ¢¥ is the direct sum

(bk: (‘B bo.

r(o)=k

Since ¢F¢ = G¢d for each covering morphism f: 0 — 7 in P, the chain map ¢* is a morphism
of Hilbert complexes.

Notation 4.4.2. We let BHilbShvy(P) denote the full sub-category of Hilbert sheaves where all
restriction maps are bounded and globally defined. We call such Hilbert sheaves bounded Hilbert
sheaf.

4.4.2 Finding Hilbert sheaves

We now turn to the problem of when a Pre-Hilbert sheaf is a Hilbert sheaf. We start with a few

useful examples.

Proposition 4.4.3. Every pre-Hilbert sheaf F : P — Hilby < Hilbg i with bounded restriction maps is
a proper Hilbert sheaf.

Proof. When each restriction map J¢ is bounded and globally defined, each coboundary map
§¥ is also bounded and globally defined. The associated cochain complex is therefore a Hilbert
complex. O

Remark 4.4.4. It follows from this proposition that BHilbShv; (P) is exactly the functor category
[P, Hilb].

Example 4.4.5. Consider a pre-Hilbert sheaf ¥ : § — Hilbg x where § = (V, ) is a finite undi-
rected multi-graph without self loops, viewed as a posetal category. Suppose there is a closed
densely-defined operator A : X — Y such that 3¢ = A for every restriction map. Each edge e has
exactly two bounding vertices 1, v, and the coboundary map & : C°(G;F) — C'(S;F) maps into
F(e) by

(8x)e =A@ (-A)
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up to a choice of orientation.

In general, this coboundary operation is not closed (see Example 3.3.4). However, it is closable,
as witnessed by a straightforward computation. Hence this is an improper Hilbert sheaf.

As a concrete example, consider the one-edge graph, and the following Hilbert sheaf

d

L2(R) —% L2(R) i L2(R)

where the domain of the derivative operator is {f € L?(R) : ' € L?(R)}. This derivative operator
is easily seen to be closed. The associated cochain complex is given by

2(R)12(R) JE) (R) ,

with coboundary map & = [d%( (_d%()]. This is not a closed operator. The closure, 5, has domain
Dom(8) = {(f,g)" € L*(R)®L*(R) : {(f—g) € L?}, and acts by weak differentiation of the

difference, 5(f, g)T = d%((f — g), yielding the associated Hilbert complex
L2(R)®L2(R) —>— [%(R) .

Remark 4.4.6. As this example shows, the closure of the block operator §* need not be a block

operator itself with respect to the same decomposition.

Remark 4.4.7. More generally, any Hilbert sheaf where every restriction map at a given rank is
the same closable operator will be a (usually improper) Hilbert sheaf.

It is, in general, difficult to write theorems for checking if a pre-Hilbert sheaf J : P — Hilbg
is a Hilbert sheaf. To ensure that the coboundary operator §* is densely-defined and closable
is often a matter of checking properties of the block operator directly through ad hoc methods.
However, there are a few handy tricks for building a Hilbert sheaf from the ground up.

Suppose we have a GAC P on which we would like to define a Hilbert sheaf. We start by
building a functor Jy : P — DenseCoreHilb ;. valued in cored Hilbert spaces. Further, assume
that stalks Fy(0) = (Xg, Vo) have already been assigned. For each covering map f : 0 — T, take
Fo(f) : (Xo,Vs) — (X¢, V) to be an operator such that R(Fy(f)) < Vr. After pushing through
the forgetful functor U : DenseCoreHilb, . — Hilbg i, we arrive at a pre-Hilbert sheaf 7 = UJ
whose coboundary operators §* are densely defined and satisfy R(6%) < Dom(8%*). To further
ensure that each 8* is closable, the results in Section 3.3 are helpful.
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We end this section with a large class of Hilbert sheaves on a network G. We start by briefly
recalling a few definitions from differential geometry. We assume that all manifolds are real and
second countable, and that all vector bundles have finite rank.

Notation 4.4.8. Let M be a smooth manifold, and n : E — M a smooth vector bundle over M.
We denote the fiber over p € M by E,, := 7' (p). We further denote the space of sections of E by
I'(E), and the space of smooth sections by '°(E).

Notation 4.4.9. We use the following standard notation for multi-indices. Given an n-tuple of
non-negative integers o = (1, ..., an), let || = 3}; ;. For an x € R™, let x* := [ [ x;x". Finally,

let 40 — L -
. - .
0x% ox] 1 oxpm

Definition 4.4.10. Let M be a real smooth manifold, and E — M as smooth vector bundle over M.
A metric on E is an assignment of an inner product hy, : E,, x E, — R to each fiber E,, of E. We
further require that for any pair of smooth sections s1,s; € '°(E), that the map ¢(p) : M — R
defined by ¢(p) := hp(s1(p), s2(p)) is smooth.

Definition 4.4.11. Let M be a smooth manifold, E — M a smooth vector bundle equipped with
a metric h, and p a volume form on M. A section s € I'(E) is an L*-section if

| 1ol 5o dutp) < =
M

We denote the space of 12-sections by L?(E).

Remark 4.4.12. The space L?(E) is a real Hilbert space with respect to pointwise addition, point-
wise scaling, and the inner product

sisouz = | g1 () sa(p)) duip)

Moreover, the space I'°(E) of compactly supported smooth sections is dense in L2(E). This stan-

dard result may be proven using a mollifier argument and a partition of unity. See [79] for details.

Definition 4.4.13. Let M be a smooth manifold, and E, F a pair of smooth vector bundles over M,
with a shared collection of trivializing neighborhoods {U;}jcj. Let I'*(E) and I'°(F) denote the
spaces of smooth sections of E and F. A linear map D : T®(E) — I'°(F) is a differential operator
if there is an integer m > such that in each neighborhood U; with local coordinates x we may

write o
i), 0%
Dl (0= > AL()

x
o =m ox

where AV is a q x p matrix of smooth functions.
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Remark 4.4.14. Let M be a smooth manifold with a volume form p, and E,F a pair of smooth
vector bundles over M, both equipped with metrics. A differential operator D : '°(E) — I'°(F)
defines an unbounded operator D : L%(E) — L?(F) with domain Dom(D) := I'*(E).

Lemma 4.4.15. Let D : L?(E) — L%(F) be a differential operator with domain T (E). D is closable.

Proof. This is a standard fact about differential operators. The essence of the argument is that any
such D : T®(E) — I'°(F), due to its smooth coefficients, admits a formal adjoint DT : I'°(F) —

'(E), such that the integration by parts formula

[ 1p®'p) 5D du= [ ho(t(p),Dsp)) an
M M

holds for every pair of sections s € '°(E) and t € '°(F) such that supp(s) n supp(t) is compact.
For a full proof, see [108, Lemma 12.8]. From this formal adjoint, we see that D : L?(E) — L%(F)
admits a densely defined adjoint D* as an unbounded Hilbert space operator, from which we

may conclude that D is closable. O

Lemma 4.4.16. Let D = [Dy] : @, T°(EV)) — @i T(FW) be a finite block operator with each
component Dy; a differential operator. D is a differential operator.

Proof. Lets = (s1,...,5m)" € (—Dm r(E0)) be a tuple of smooth sections. s is a smooth section
of the direct sum bundle E(V @ --@®E(M) — M. In local coordinates, each term Di; can be written
as a smooth-function weighted sum of derivatives. Consequently, Ds € D}, T°(F(V) itself is a

smooth-function weighted sum of derivatives, and hence a differential operator. O
With these lemmas in hand, we can define a broad class of Hilbert sheaves.

Theorem 4.4.17. Let § = (V,€) be a finite network, and F : G — Hilbor be a pre-Hilbert sheaf
consisting of the following data.

e For each o € V11 &, the stalk (o) := L2(E®), where E° is a smooth vector bundle, equipped with a
metric, over a smooth manifold M with volume form u°.

e For each covering morphism f : v — e, the restriction map F¢ : L?(EV) — L?(E®) is a differential

operator.
F is a Hilbert sheaf.

Proof. The coboundary operator & : C°(;F) — C'(S; F) is a finite block operator with differential
operators for blocks. Lemma 4.4.16 ensures that  is itself a differential operator, which is closable

by Lemma 4.4.15. Therefore J is a Hilbert sheaf. O
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Remark 4.4.18. The closure § corresponds to extending the domain of 4 to sufficiently weakly-
differentiable sections with square integrable derivatives, which corresponds to the Sobolev space
H*(@®, ey EY) € L2 (@, EY) = C°(G; F), where k is the order of § as a differential operator.

4.5 SHEAF OPERATIONS

We now return to the sheaf operations briefly discussed in Section 1.4.4. While most sheaf opera-
tions, when applied to a pre-Hilbert sheaf, will yield a new pre-Hilbert sheaf, care must be taken
with Hilbert sheaves. Not all sheaf operations respect the closability of the coboundary operator
without additional assumptions. To that end, we state operations in terms of pre-Hilbert sheaves,
and provide conditions under which following each operation with a proposition that states
when the operation yields a Hilbert sheaf. These criteria should not be considered exhaustive.

Remark 4.5.1. Since bounded pre-Hilbert sheaves are always Hilbert sheaves, and all sheaf op-
erations preserve boundedness of restriction maps, it follows that all sheaf operations respect
bounded Hilbert sheaves.

4.5.1  Direct sum

Definition 4.5.2. Let 5,5 : P — Hilbg i be pre-Hilbert sheaves. The direct sum of J and § is the
pre-Hilbert sheaf ¥ @ G : P — Hilby ;. with stalks (F@® §)(o) = F(0) @ 9(0) and restriction maps
given by (F@ 9)¢ = F(f) @ §(f).

Proposition 4.5.3. If ¥, G : P — Hilby i are both Hilbert sheaves, the direct sum F @ G is a Hilbert sheaf

as well.

Proof. The space of k-cochains of ¥ @® G decomposes as C¥(P; F® G) = C*(P;F) ® C*(P; G). Hence
the coboundary operator S‘g@g itself can be written as a block operator

K 8k 0
I ~ °
0 8k

with respect to this decomposition, with domain Dom(8%) @ Dom(S‘é). It easily follows that F&® G
is a Hilbert sheaf. ]

90



4.5.2 Tensor product

Definition 4.5.4. The tensor product of two pre-Hilbert sheaves J,G : P — Hilbg i is the pre-
Hilbert sheaf F® G : P — Hilbgj with stalks (F® 9)(0) = F(0) ® §(0) and restriction maps
given by (F® 9)¢ = F(f) ® §(f).

Proposition 4.5.5. Let F,G : P — Hilby ;. be Hilbert sheaves whose coboundary operators 8% and S’é
have closable rows. The tensor product § ® G is also a Hilbert sheaf.

Proof. Let T € P be a (k + 1)-cell, and let R, denote the row of the k-coboundary operator &% of
F® G that maps onto (F® 9)(t) To prove that R is closable, it suffices to show that the adjoint
map R¥ has dense domain. There are inclusions

(1 () Dom ((Fr®Sr)*) < Dom(R%) < (F®9)(1).

o1 T fio—oT

Since F and § each row of the coboundary operators 8% and Sg are closable, there are dense
linear subspaces:

Xg:= () [) Dom(F}) < F(v),

o1 Tfio—>T

Xg = ﬂ ﬂ Dom(S%) < §(7).

o1Tfio—>T

There is a sequence of dense subspaces
Xy ®alg X9 = ?(T) ®alg S(T) = ?(T) ® 9(T) = (ff@ 9)(T)

where ®,}; denotes the algebraic tensor product. Since Dom(A* ® B*) < Dom ((A®B)*) for any
pair of Hilbert space operators, Xg ®,1; Xg € Dom(R%). Therefore R} is densely defined, making
R closable. By Lemma 3.3.6, §¥ is closable, and ¥ ® G is a Hilbert sheaf. O

4.5.3 Sheaf hom

Unlike for weighted cellular sheaves, the sheaf hom cannot always be defined for pre-Hilbert
sheaves. The essential problem is that for infinite dimensional Hilbert spaces X and Y, the space of
bounded linear operators Hilby (X, Y) is a Banach space, but not a Hilbert space. This obstruction
to the sheaf hom construction also applies to bounded Hilbert sheaves. However, by restricting
to Hilbert sheaf morphisms to those whose components are Hilbert Schmidt operators.
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Notation 4.5.6. Let F, G : P — Hilb i be pre-Hilbert sheaves. For o € P, let HS;(F, §) denote the
collection of natural transformations ¢ : F ‘st(g) =G ‘St(g) that satisfy the following conditions.

(i) Each component ¢ : F(t) — §(7) is a bounded, globally defined Hilbert Schmidt operator.
(ii) For every morphism f of st(o) with source 7, there is an inclusion ¢(Dom(F)) < Dom(9¢).

Lemma 4.5.7. Let F,G : P — Hilbg i be pre-Hilbert sheaves. If the restriction maps of G are closed, the
space HS (3, G) is a Hilbert space for each o € P.

Proof. We may identify HS(J, 9) as a linear subspace of the Hilbert space’

H:= P HS(F(0),5(0)),
Test(o)
where HS(F(0), 9(0)) is the Hilbert space of Hilbert Schmidt operators between F(o) and §(o).
We now must verify that HSs (5, §) is closed as a subspace of .

Let ¢™ denote a sequence of natural transformations in HS4 (5, §) such that ¢™ — ¢ € H. Each
component ¢ converges to ¢ in the Hilbert-Schmidt norm, and hence in the operator norm as
well.

Let f: T — v be a morphism of P. Let x € Dom(J¥). For each n € IN, we have that G¢dpx =
¢ Fex. By the observed operator norm convergence, we have strong convergence, so ¢px —
drx and $TFrx — dyTFx. Since Gy is closed, Grdix — Gedrx = dyFrx, proving that ¢ €
HSs(F,9). O

Remark 4.5.8. Since every natural transformation in HSy(F,3) contains the data of a natural
transformation HS.(J,5) for every T > o, we may identify HS(F,9) < HSs(F,5) as a sub-
Hilbert space.

With this lemma, we may define a Hilbert-Schmidt analog to the sheaf hom.

Definition 4.5.9. Let 7,5 : P — Hilbg i be pre-Hilbert sheaves, with § having closed restriction
maps. The Hilbert Schmidt sheaf hom from JF to § is the pre-Hilbert sheaf HS(J, §) with stalks
HS(F,9)(0) = HS(F,9), and all restriction maps given by orthogonal projection.

Since every restriction map in HS(F, ) is an orthogonal projection, and hence bounded, we
immediately get the following result by Proposition 4.4.3.

Proposition 4.5.10. Let F,G : P — Hilbg x be pre-Hilbert sheaves, with G having closed restriction
maps. The Hilbert Schmidt sheaf hom HS(F,SG) is a Hilbert sheaf.

Note that when st(o) contains infinitely many object, the maps in H must have square-summable Hilbert Schmidt
norms.
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Remark 4.5.11. Unsurprisingly, there is no longer a tensor -{ hom adjunction for Hilbert sheaves.
This is an immediate consequence of the lack of a tensor 4 hom adjunction for Hilbert spaces in
general.

4.5.4 Kernel

Definition 4.5.12. Let 1 : ¥ — G be a morphism of Hilbert sheaves. The kernel of 1 is the Pre-
Hilbert sheaf ker(n) : P — Hilbg i with stalks ker(n)(o) = ker(ns) < F(0), and restriction maps

ker(n)s = F¢ ) forf:o0 — 1.

‘ker(n(y
Proposition 4.5.13. The kernel of a Hilbert sheaf morphism is a Hilbert sheaf.
Proof. Let 8 denote the k-coboundary operator of F. The k-coboundary operator of ker(n) is

the restriction of 8 to a sub-Hilbert space C*(P;ker(n)) < C¥(P;F). Since 5 is closable, this
restriction is closable as well. O

4.5.5 Pullback

Definition 4.5.14. Let ¢ : P — Q be a cellular map. The pullback of a pre-Hilbert sheaf J :
Q — Hilbg ik by ¢ is the pre-Hilbert sheaf $*F : P — Hilb ;. with stalks ¢*F (o) = F(Pp(0)) and
restriction maps ¢*F¢ = Fyf).

Proposition 4.5.15. Let P,Q be finite GACs which admit signed incidence structures, ¢ : P — Qa
covering map, and F : Q — Hilby i a Hilbert sheaf. The pullback $*J is a Hilbert sheaf.

Proof. 1t is straightforward to verify that there is an n € IN such that for each object 0 € Q,
|¢~"(0)| = n. Therefore we may write

Ck(P;0*F) = P"C*(P;9),
where @" denotes the n-fold direct sum. With respect to this direct sum decomposition, we may
write Slg)*(f = (—Dn Slg)* 4 since ¢ is an isomorphism star-wise. It follows that 5]5)*? is closable. O

Remark 4.5.16. In general, the pullback of a Hilbert sheaf need not be a Hilbert sheaf. The
essential problem is that an arbitrary pullback may duplicate blocks in the coboundary matrix
in a manner that breaks closability. Without additional structure to the cellular map ¢ to control
the preimages of cells, closability cannot be guaranteed.
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4.5.6  Pushforward

Defining the pushforward of a pre-Hilbert sheaf requires the use of restriction limits. Let ¢ : P —
Q be a cellular map. For each object 0 € Q, let Py, ; denote the full subcategory of P generated by
the set of objects {0’ € P : ¢(0’) > o} in the underlying poset of Q. By domain restriction, each
such category Py, o defines a functor F ‘?W : Pp,o — Hilbg k. This functor has a restriction limit

¢+F(0) := reslim EF‘% .-

When o < T in the poset underling Q, the restriction-limiting cone over F ‘% with apex ¢.F(0)
defines a cone over J ‘% . Since both of these cones have total legs, there is a unique operator

GuT¢: q)*f}"((y) - q)*gj(”f)

such that q, = py$+F¢, where p, and g, are the legs of the cones with apex ¢.F(7) and ¢.F(0)
respectively.

Definition 4.5.17. Let ¢ : P — Q be a cellular map. The pushforward of a pre-Hilbert sheaf
F : P — Hilbyy by ¢ is the pre-Hilbert sheaf ¢.F : Q — Hilbg with stalks ¢.J (o) and
restriction maps ¢*Js.

Remark 4.5.18. It is, in general, very difficult to ensure that the pushforward of a Hilbert sheaf
J is a Hilbert sheaf outside of the bounded case. The fundamental challenge is that when the re-
striction limits used to define the stalks of ¢.J are not honest limits, there is no clear relationship
between the coboundary operators % and S‘(;*?.

Proposition 4.5.19. Let F : P — Hilby be a bounded Hilbert sheaf, and & : P — Q a cellular map. The
pushforward &..F is a Hilbert sheaf.

4.6 COHOMOLOGY

Let § : P — Hilbg be a Hilbert sheaf with associated Hilbert complex (C'(iP, F), 6‘). As a
Hilbert complex, we get a corresponding reduced sheaf cohomology

H*(P; F) := ker(5%)/R(5%T).

When R(5%1) is closed, we call H the k'-sheaf cohomology.
In degree zero, the (reduced) sheaf cohomology is easy to interpret. By Theorem 3.2.11, there
is a unitary isomorphism I'(F) = ker(8°) =~ H¥(P;F) between the reduced sheaf cohomology
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and the space of global sections. Higher cohomology groups for closed Hilbert sheaves can be
interpreted as obstructions to lifting cocyclic sections in the manner of Section 3.2.3.

We may also work with relative cohomology of Hilbert sheaves. Say that a full subcategory
B < P is a subcomplex> of P if whenever y € B and x < y in the underlying poset, we have
x € B as well. When B is a subcomplex of P, every signed incidence structure € on P restricts to
a signed incidence structure on P. The restriction F ‘B : B — Hilby y is itself a Hilbert sheaf.

We may view the restriction ‘B : B — Hilbg i as a Hilbert sheaf on P in the following way.
Let t : B — P denote the inclusion of B as a subcategory. Both 1* and . preserve Hilbert sheaves,
so we may apply both to J and obtain a Hilbert sheaf 1.1*F : P — Hilbg . This Hilbert sheaf
essentially looks look F, except the stalk F(o) = 0 (with the restriction maps into and out of F(o)
adjusted accordingly) whenever o ¢ B. There is a natural transformation J — 1,1*J given by the
identity map I on stalks over o € B, and 0 on the stalks over o ¢ B.

We may also form the Hilbert sheaf ker(t.t*) : P — Hilby i, which has stalks

Ker(x*)(0) = F(o) ifo¢ B

0 ifoeB

and restriction maps given by domain restriction. There is a morphism of Hilbert sheaves from
ker(t.t*) to F whose components are stalk-wise inclusion maps.

Note that ,t*F and ker(1,1*) are non-zero on complementary stalks. Consequently, the Hilbert
complex (reduced) cohomology of the Hilbert complex associated to ker(i.t*) may be identified
with the relative cohomology of F with respect to t,1*F. We thus use the notation H® (P, B; F) :=
H* (P; ker(1,*)).

The identified natural transformations yields a short exact sequence of Hilbert sheaves

0 — ker(,l*) > F > ,,"F -0,

2 We adopt the term "subcomplex” to evoke a subcomplex of a regular cell complex, which play an analogous role when
a cellular sheaf is defined on a face poset.
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which functorially induces an exact sequence of the associated Hilbert complexes:

j L

0o —— Ck(iP;ker(L*L*)) — Ck(iP;ff") —_ Ck(T; L*L*f}') — 0

k k
5ker(t*t*)l 55‘l 6L*L*9’~l

The snake lemma (Lemma 3.2.12) provides the following Hilbert complex.
HO(?,;F) —— HO(P;F) —— HO(P; L")

dO
H' (P,;F) —— H'(P;F) —— H'(P;u*F)

When ¥ is a closed Hilbert sheaf, the restriction 1..*F is closed as well. It follows that this

sequence is exact at all locations except H* (P; 1, 1*F).

Remark 4.6.1. Note that when J is a closed Hilbert sheaf, it does not necessarily follow that
ker(t,1*F) is closed.

4.7 RANGE AND NORMALIZATION

Beyond having an interpretable cohomology, closed Hilbert sheaves, whose coboundary opera-
tors 5* have closed range, have desirable properties that generic Hilbert sheaves lack. The follow-

ing proposition justifies the emphasis on closed Hilbert sheaves.

Proposition 4.7.1. Let A : X — Y be a closed, densely defined Hilbert space operator. If A has closed

range, then 0 ¢ o(A) or 0 is an isolated eigenvalue.

Proof. This follows straightforwardly from the closed range theorem (Theorem 2.3.15). Since A
has closed range, the restriction Ay := A‘ker( AL is bounded below; there is a constant C > 0
such that |Apx| = C|x| for all x € Dom(Ap). Ag is injective, and admits an inverse map Ag] :
Y — ker(A)! with domain Dom(A; 1) = R(Ao). A51 is a bounded operator with operator norm

|Ag lop < & The spectral radius of a bounded operator is bounded above by the operator norm,
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so |?\\ < Lforallde o(Ay ). By the spectral inversion formula, 6(A)\{0} = o(Ao)\{0} = {A e
x €0(Ag

C: 1\{0}} is bounded away from zero. O

When J : P — Hilbg i is a closed Hilbert sheaf, each coboundary operator &k : C*P;7) —
C**1(P;F) has a "gap" in its spectrum surrounding 0. As we will observe in the following chap-
ters, the closed range condition also impacts the Hodge Laplacian of the corresponding Hilbert
complex, causing the spectral theory and dynamics to more closely mirror that of the finite
dimensional case. Other closed range conditions also allow the recovery of finite dimensional
results, like sheaf normalization.

Definition 4.7.2. Let J : P — Hilbo be a Hilbert sheaf. J is normalized if for all o € P and
x,y € F(o) nker(8)+, we have (5x, &y) = (x,y).

Remark 4.7.3. Note that we are defining normalization with respect to the Hilbert complex associ-
ated to the cellular sheaf.

Remark 4.7.4. It follows directly from the definition that if 7 : P — Hilbg y is a normalized sheaf,
the coboundary operator 6° is a bounded operator in each grade. Under some additional mild
hypotheses on the structure of P, it follows that J is a bounded Hilbert sheaf.

At times, it is convenient to normalize a cellular sheaf—replace a cellular sheaf J with an

isomorphic normalized sheaf 7.

Theorem 4.7.5. Let § : P — Hilby i be a Hilbert sheaf such that P has a maximal rank N. F can be
normalized if and only if the associated Hilbert complex (C*(P; F),8°) is bounded and each column of 5%
has closed range.

Proof. First, suppose there is a k such that 8% : C*(P; F) — C**1(P; ) is unbounded. Then &* as
a linear function is unbounded for all pairs of Hilbert space norms on the vector spaces C*(P; F)
and C**+1(P; F). It follows that the sheaf I cannot be normalized. Hence boundedness of each 5%
is required.

Next, we prove that when each 5% is bounded, F can be normalized if and only if each 5% has
closed range. By the closed graph theorem, each 5k is necessarily globally defined. Starting from
the highest rank, we modify the inner product structure on each stalk to achieve normalization.
Suppose all cells of rank k + 1 have already been normalized; that is, for all T € P with r(1) > k+ 1
and all x,y € F(1) n ker(8¥*1)L, we have (6¥+1x, 55" 1y) = (x,y). Fix a cell ¢ € P of rank k. To
normalize the stalk F(o), take the orthogonal projections P,Q : F(0) — F(o0) onto ker(8**1)
and ker(8%* 1)1 respectively. We may take these projections as ker(5**1) n F(0) is topologically
closed. Define a new inner product on F(o) by

X Yso = <5kQXI 5kQU>*Ck+1 +{Px, Py,
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where (—, —) is the un-normalized inner product on F(0), and (—, —),cx+1 is the normalized
inner product on C**1. The stalk F(0) is normalized with respect to this new inner product.
Repeating this process inductively normalizes the sheaf.

One may check that this new inner product also induces a Hilbert space structure on J(o) if
and only if the column of &¥ that acts on (o) has closed range. When this inner product does
induce a Hilbert space structure, the two Hilbert space structures must have equivalent norms.
Let ¥’ : ? — Hilbg ;. denote the normalized sheaf obtained at the end of this inductive procedure.
The natural transformation 1 : ¥ = JF’ given by ns : x — x witnesses that these two Hilbert

sheaves are isomorphic. O

Remark 4.7.6. This "every column of 8% has closed range" condition is quite restrictive; this will
not hold in general, and neither implies nor is implied by J being a closed Hilbert sheaf.
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5

HILBERT SHEAF LAPLACIANS

This chapter investigates the spectral properties of Laplacians associated with cellular sheaves
valued in Hilbert spaces. The sheaf Laplacian, defined as the Hodge Laplacian of the Hilbert com-
plex from Chapter 3, encodes local consistency of stalk-wise data and global harmonic structure.
Building on the finite-dimensional theory, the infinite-dimensional setting reveals new phenom-
ena, such as the delicate relationship between closed-range conditions, spectral gaps, and the
solvability of harmonic extension problems. This chapter establishes when the finite-dimensional
results of [54] and [52] generalize.

Section 5.1 introduces the Hilbert sheaf Laplacian £* = (§%)*8% + 8%~ 1(8%~1)* as a closed,
densely defined, positive operator on the space of k-cochains. Its fundamental properties follow
from the general theory of Hodge Laplacians. The kernel consists precisely of harmonic cochains,
which are unitarily isomorphic to reduced cohomology classes. Section 5.2 examines the har-
monic extension problem, wherein one seeks to extend data over a subset of cells, thought of
as a boundary constraint, to a harmonic cochain on the complement of the boundary cells. For
bounded Hilbert sheaves, we establish existence through block operator analysis; for unbounded
sheaves, we employ the theory of shorted operators to characterize when solutions exist. The
analysis reveals that solvability depends crucially on whether boundary data lies in the domain
of a certain quadratic form. Section 5.3 develops the spectral theory of sheaf Laplacians. The
interaction of sheaf morphisms with the Laplacian spectra is explored, establishing spectral con-
tainment relationships. When coboundary operators have closed range, zero becomes an isolated
eigenvalue, and we establish interlacing results for eigenvalues under sheaf morphisms. The
chapter concludes by examining how sheaf operations, particularly direct sums and pullbacks,

interact with Laplacian spectra.

5.1 THE HILBERT SHEAF LAPLACIAN

In Section 3.2, we observed that every Hilbert complex has an associated Hodge Laplacian. The
Hodge Laplacian £° forms a positive operator on each grade of the Hilbert complex. We be-
gin this chapter investigating the corresponding Laplacian £*(P; F) that arises from the Hilbert
complex (C*,5°) associated to a Hilbert sheaf F: ? — Hilby,.
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Definition 5.1.1. Let F : P — Hilbgx be a Hilbert sheaf with corresponding Hilbert complex
(C*®,5°). The sheaf Laplacian for JF is the chain map £°*: C* — C* defined by

Lk — (6k)*6k + 6k—] (6](—1)*
on k-cochains.

Remark 5.1.2. Since the coboundary map itself depends on the choice of signed incidence relation
on P, the Laplacian does as well.

As the Hodge Laplacian of a Hilbert complex, Theorem 3.2.21 and Theorem 3.2.19 apply to
Hilbert sheaf Laplacians, and give the following properties.

Proposition 5.1.3. Let £° be the Hilbert sheaf Laplacian of a Hilbert sheaf ¥ : P — Hilbg i. £°* has the
following properties.

(i) L¥ is a closed, densely defined, positive operator for each k € IN.

(ii) The kernel ker(L¥) = CX(P; F) is exactly the k-harmonic space $*, and is unitarily isomorphic to
the k!"'-reduced cohomology H*(P; F) = ker(8%)/R(5%1).

(iii) In particular, the kernel of L° is exactly the kernel of 8°, which is unitarily isomorphic to the space
of global sections ker(8°).

Example 5.1.4. We return to the simple Hilbert sheaf

d

L2(R) —& L2(R) o L2(R)

from Example 4.4.5. The degree-zero Laplacian £ : L?(R) ® L?(R) — L?(R) ® L?(R) is given by

(S
g d%zz(f—g)

with domain Dom(£) = {(f, )T : &5 (f —g) € L2(R)}.
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5.2 HARMONIC EXTENSION

Definition 5.2.1. Let F: P — Hilbg i be a cellular sheaf of Hilbert spaces, and let U < Ob(?P) be
a collection of objects of rank k in P. We say that a k-cochain x € C*(P;F) is harmonic on U if
ka‘u = 0, where X‘u is the orthogonal projection of C*(P; F) onto the subspace P, F(u).

We have already observed that $, the space of k-harmonic cochains, is exactly the kernel of
the sheaf Laplacian £¥, and that the 0-harmonic cochains may be identified with the space of
global sections (Proposition 5.1.3). This identification carries particular significance in the con-
text of cellular sheaves, where the coboundary operator §° : CO(P;F) — C!(P;F) encodes the
compatibility conditions between local sections. The harmonic cochains represent a natural gen-
eralization of classical harmonic functions to the sheaf-theoretic setting. In the finite-dimensional
case, these cochains admit an explicit characterization through the Hodge decomposition. How-
ever, for Hilbert sheaves with unbounded operators, the relationship between harmonic cochains
and cohomology classes becomes more subtle, particularly when the coboundary maps fail to
have closed range. This motivates the study of harmonic extension problems, wherein we seek
to extend partial data defined on a subcomplex to a harmonic cochain on the entire domain.

The harmonic extension problem naturally arises in several contexts within applied topology.
For instance, when modeling distributed systems or sensor networks via cellular sheaves, one
often possesses measurements or constraints on a subset of nodes and seeks to infer consistent
values throughout the network. The existence and uniqueness of such extensions depend cru-

cially on the spectral properties of the restricted Laplacian operators, as we shall demonstrate.

Definition 5.2.2. Let ¥ : P — Hilbg i be a Hilbert sheaf, B be a subcomplex of P, and U =
Ob(P)\Ob(B). A harmonic extension of a k-cochain y € C*(B;J) is an x € C*(P;F) such that

(ka)‘u = 0 and x|, = y. The harmonic extension problem is to find a harmonic extension
x € C*(P; F) of a specified cochain y € C*(B; F).

Remark 5.2.3. When B is empty, the harmonic extension problem reduces to the problem of

finding a harmonic cochain.
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5.2.1 Bounded harmonic extensions

Analysis of the harmonic extension problem for a bounded Hilbert sheaf is straightforward. In
a slight abuse of notation, write CK(P;F) = CK(W; F) @ C*(B; F) for each k. Write the Laplacian
Lk CRU;T) @ CK(B; F) — CK1(U; F) @ CKH1(B; F) as a block operator

k k
L U,u L u,B

k k
LB,U ’CB,B

Lk =

The harmonic extension problem asks us to find w € C*(U; F) and z € C*(B; F) such that

k k
k Kk
L%,u LB,B y z
It suffices to find a w such that L{j uW = —E‘g 1Y- In other words, to show the harmonic extension

problem has a solution for all y, it suffices to show that IR(LE/B) c iR(LI‘jlu). With respect to this

same decomposition of k-cochain spaces, we may write

6k _ Sﬁ,u 6'};,‘3
O 6%[3

where 5%” = 0 by the closure property of a subcomplex. We may express the k-Laplacian as

[ ek
| Ly L5s
| G (850)* 85
_(55,13)*51]111 (55,93)*5]&,93 + (5]13,3)*5]%,3

55/&1 (5»}1&1 )* + 51]1_31 (61]1,_8] )* 61&’—31 (6;—81 )*
Writing T = [(6{111)* SEE 51‘1—31] and S = [(51‘193)* 0 5;33‘], we may write £, = TT* and
Lﬁ,g = TS*. We have a range inclusion R(TS*) < R(T). Finally, R(T) = R(TT*) if and only if T

has closed range. We now present the following theorem.

Theorem 5.2.4. Let J : P — Hilbg i be a bounded Hilbert sheaf and B a subcomplex of P. The harmonic

extension problem has a solution for every y € CX(B; F) if and only if 6‘1},1(, Sﬁgj , and 6]&,_31 have closed
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ranges. When 8 itself has closed range as well, the solution is unique if and only if the map H*(P, B; F) —
H¥(P; F) is the zero map.

Proof. We have already established the existence of solutions to the harmonic extension problem.
To establish uniqueness, we must determine when L'E,u is injective. We relate the decomposition
CK(P;F) = CX(B; F) @ C*(U; F) to the relative cohomology with respect to B. Since C*(U; F) =
C*(B; F)*, we may identify C*(U; F) with the space of relative k-cochains C*(P, B; F) that vanish
on B. The coboundary operator of the relative Hilbert complex is exactly the block &y, in the
block representation of 5%; we recover the relative Hilbert complex

5k
C— Ck(T,B,‘EF> & Ck+1(T,‘B;EF) - s ...

and its Hodge Laplacian A% = (8§ ,)*8{, + Sﬁ,{j (65,&1 )*. Looking at the block decomposition
of £¥, we may write L{j’u = A+ 65331 (6533] )*. The kernel of a sum of positive operators is the
intersection of the kernels, so ker(Lﬁ/u) = ker(A*) n ker((65331 )*). Now, consider the map

d: Hk! (B;F) — ﬁk(fP, B, F)

from the cohomology long exact sequence on Hodge representatives. The map is given by the re-
striction d := 6;}; ‘ ST (B Therefore Eﬁ,u is injective if and only if R(d) is dense in ﬁk(fP, B, F).
Since 6% has closed range, the relative cohomology Hilbert complex is exact at ﬁk(fP,B;f}'), SO

R(d) is dense in H*(P, B; F) if and only if j : H*(P, B; F) — H*(P; F) is the zero map. O
5.2.2  Unbounded harmonic extension

The preceding analysis of the harmonic extension problem for a bounded Hilbert sheaf does
not directly apply to an unbounded Hilbert sheaf. There are two key difficulties that must be

overcome.

1. Domain splitting. When J : P — Hilby i is an unbounded Hilbert sheaf, while the operator
8% splits over the decompositions C*(P;F) = C*(P, B;F) ® C*(B;TF), there is no guarantee
that the Laplacian £¥* does. The restriction (£*x)|, may not be well defined.

2. Well-posedness. When the Laplacian does split, Harmonic extension becomes trivially im-
possible when y € C(B; ) falls outside the shared domain Dom (£ 5) n Dom(L ).

Nonetheless, well-posed harmonic extension problems for unbounded Hilbert sheaves may
have interpretable solutions.
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Example 5.2.5. Let 7 : P — Hilbg i be the Hilbert sheaf

da

L2([0,1]) —== 12([0,1]) «—— L2([0,1])

[ ] *

with Dom(4:) = {f € L?([0,1]) : f" € L([0,1])}. Let {x} be a one-point subcomplex of P. F is a
proper Hilbert sheaf with Laplacian

(-
g g—f'

with domain Dom(£) = {(f,g)T : f’ € LZand (f' — g)’ € L?}. Since these derivatives are
weak, this Laplacian can be written in block-matrix form over the decomposition CcOo(, +LF) @
CO({x};F) = L2([0, 1) @ L*([0, 1]) as

d2
dx2’
fail to have a solution. For a fixed g € CO({x};F) =~ L?([0,1]) the harmonic extension problem

asks us to find an f € L%([0,1]) such that f” — g’ = 0. This is satisfied by f = cx + { g, where {g
is any anti-derivative of g. As expected, the harmonic extension problem has a solution exactly

The range of % is a superset of than the range of so the Harmonic extension problem may

when g € SR(%). Moreover, the solution when ¢ = 0 is a harmonic section and f is a solution to
the )(weak) differential equation f’ = g.

Following the approach of Arlinskii [6] for linear relations, we analyze the harmonic extension
problem through the theory of shorted operators. The following analysis also applies to bounded
Hilbert sheaves.

Let ¥ : P — Hilby i be a Hilbert sheaf with associated cochain complex (C*(P?;F),5°®). Let
B be a subcomplex of P, and let P and Q denote the orthogonal projections from C*(P; )
onto C¥(B;F) and C*(U; F) = C*(B;F)* respectively. Let D := Dom(5¥) n Dom((8%~1)*). The
coboundary operators 5% define a a quadratic form

a(w,v) = (8%, 8%v) 4+ (8% ) u, (8% 1) *v)

on CK(P;F) x CK(P; F) with domain D x D. When u € Dom(L*) and v € D, we have a(u,v) =
(LR, v).
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For y € C*(B; ), let Ay := {x € D : Px = y}. Note that Ay may be empty. We may rephrase
the harmonic extension problem in terms for the forms ag and a.

Proposition 5.2.6. Let y € C*(B; F). u e C*(P;F) is a solution to the harmonic extension problem for y
if and only if u is a minimizer of q(—) := a(—, —) over Ay.

Proof. We prove the real case; the complex case is similar. Let y € C*(B;J). A solution to the
harmonic extension problem for y is an x € C¥(B; F)* such that L¥(x +y) = z € C*(B;F). Set
u:=x+y,and letx’' € Ck(B; EF)L n D, and consider the quantity

q(u+x') = (L) 2ul? + [ (£%)2x]? + 2(L5u,x").

Since L*u | x/, it follows that q(u + x’) = q(u), and u minimizes q(u).
Conversely, suppose that u = x + y minimizes q on Ay. For any x’ € C*(B;F)' nD and t e R,
we have g(u + tx’) > q(u). Expanding and rearranging yields

2t(L*u, X'y + t2q(x’) = 0.

This quadratic in t can only be positive if the linear term 2t(£*u, x") = 0, from which we conclude
that PL¥u = 0, making u a solution to the harmonic extension problem. O

Remark 5.2.7. We define a new functional
ag(y) := inf{a(x,x) : x € Ay}

with Dom(ag) := {y € C*¥(B; ) : Ay # @}. As a minimizer of g, a harmonic extension u realizes
the infimum ag(y). The quadratic form ag(y) defines an energy functional, which is minimized

by a harmonic extension.

Theorem 5.2.8 ([6, Theorem 3.1]). Let A : X — X be a positive Hilbert space operator, and Y a subspace
of X. The set
Z(A,Y) = {A a positive operator with A < A and R(A) < Y}

has a unique maximal element Ay, called the shortening of A. The map Ay has the following properties.
(i) Y+ < kerAy.
(ii) Ayl is self-adjoint in Y.

(iii) R(AY?) = R(AV2) A Y.

Let £X denote the shortening of the sheaf Laplacian £* with respect to the subspace C*(B; F)
C*(P; F). We may relate the shortening £X to the quadratic operator ag by the following propo-
sition, adapted from [77].
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Proposition 5.2.9. There is an equality ag(y) = (LXy,y).

Proof. For each t > 0, let By := (£* : tP) denote the parallel sum of positive operators [6,
Definition 4.1]. Since tP is bounded, each parallel sum By is a bounded, positive operator. The B
operators have strong resolvent limit

SR- lim By = £X
t—oo

by [6, Theorem 4.3]. Moreover, by the idempotence of shorting and [6, Proposition 3.2], it fol-
lows that SR-lim{_,(B¢)3 := (L%)g = L%. Since each (Bt)p is bounded and positive, they
generate a globally defined, non-negative quadratic form b¢(x) = {((B¢)sxX,x). Moreover, this
family is bounded below by zero, and is monotonically increasing in t. For each x € Dom(£%),
Kato’s monotone convergence theorem for quadratic forms ([73, Theorem VIIL.3.13a]) ensures
limy_,o0 be(x) = (LEX, X).

Conversely, since each operator (B¢)s is bounded, we may apply Krein’s variational identity
[771:

be(x) = inf {{(Be)s(x+y)x+y)}.
yeB

The quantity on the right hand side is monotonically increasing in t for each x, from which
we may conclude that lim¢_,o by (x) = ag(x) for all x € Dom(£X). This identity may be weakly
extended to x € Dom ((£X)1/2). O

Corollary 5.2.10. The harmonic extension problem has a solution at y if and only if y € Dom(ag).
Moreover, y € Dom(LX) if and only if the energy minimizer u = y + x belongs to Dom(£¥), and
z:= PL¥u = LKy is determined uniquely.

5.3 LAPLACIAN SPECTRA
We begin by summarizing some properties of the domains and ranges of the up and down
Laplacians respectively.

Proposition 5.3.1. Let C* = Bk @ H* @ 3% denote the weak Hodge decomposition for the space of
k-cochains. The following hold.

(i) R(LK) < B¥ < ker(LX) = ker(5%).

(i) R(LK) < 3% < ker(LK) = ker((8%1)%).

(iii) H* = ker(LX) nker(LX) = ker(L").
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Proof. Since all four operators 6% and 5%~

are closed operators (and hence closed kernels closed
kernels) with R(8%~1) < ker(8¥), we immediately recover B* < ker(5%). A similar argument with
the adjoints (6%)* and (8%~ 1)* (plus a use of the identity ker(A)* = R(A*) for a closed operator

A) yields the second item. The third item is the main content of the proof of Theorem 3.2.21. [

Corollary 5.3.2. The up and down Laplacians £X and L¥ restrict to maps:

CK | 34 - 3L

When clear from context, we will use £X and £¥ to refer to both the up/down-Laplacian and

its restriction. We are now able to begin analyzing the spectrum of the sheaf Laplacian £¥.

Proposition 5.3.3. 0 is ot an eigenvalue of £X | 5., nor £X | If 8% (resp. §51) has closed range, then
0 is not in the spectrum o(LX |5, (resp. o(£X[57)).

Proof. We prove the result for the restricted up-Laplacian £¥ : 3%t — 3*L; the corresponding
argument for the down-Laplacian is essentially identical. Since 3%+ L ker(£X) n 3%+, zero cannot
be an eigenvalue. If R(5%) is closed, the closed range theorem guarantees that 5% is bounded
below on 3%%; there is a ¢ > 0 such that |[§%x| > c||x| for all x € 3%¥* n Dom(&¥). The up-
Laplacian on 3%+ n Dom(£k) is bounded below by c?1, as (£} x,x) = |8x|? > ¢?|x|%. It follows
that £ — c? is a positive operator. 0 ¢ o(£;") since (£} — c?I) = (L) + 2. O

Proposition 5.3.4. The spectrum of £¥ is given by o(£*) = {0} U o(L¥X) U 6(LX). Moreover, if R(5%~ 1)
and R(8%) are closed, then o(L¥)\{0} = G(LE‘BM) U g(L‘j‘@)_

Proof. The weak Hodge decomposition C¥ = Bk @ H* @ 3%! can equivalently be written as

Ck = R(8%T) @ ker(L¥) ® R((8%)*). Utilizing the identities of Proposition 5.3.1, the operator
L¥: C* — Ck can be written as a block-diagonal operator

LElge 00
L= 0 0 0
0 0 £¥[su
It easily follows that the spectrum of £* is the union of the spectra of the blocks: o(L*) =
{0} U o(LK) U o(£X). When 6% and & have closed range, Proposition 5.3.3 ensures that zero

is not in the spectra of the restricted up/down-Laplacians.
O
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Corollary 5.3.5. Suppose that 8% and 6%~ both have closed range. Then 0 is an isolated eigenvalue of
Lk,

Proof. In the proof of Proposition 5.3.3, we saw that when &% and %! have closed ranges,
the spectra of the restricted up/down-Laplacians are bounded away from zero. Hence Propo-
sition 5.3.4 proves that 0 € o(£¥) is an isolated eigenvalue. O

Proposition 5.3.6. O'(L]_T_}BkL) = G(LE_] {%k,,).

Proof. Using the polar decomposition [100, Theorem VIIL32], we may write 8 = U,/LX, where

U: C* — Ck*1 is a partial isometry with initial space ker(8)* and final space R(8¥), and 4/£Lk is

the unique self-adjoint operator such that 4/£¥ o, /£¥ = £¥. We may now compute:

LE—F] _ 6k(6k)*

o) (550

K
=ucLiur.
U restricts to a unitary map U : 3kt — Bk+1 g0 U(Uﬂyd) — oLk ‘%k_1) have the same
spectra. O
Remark 5.3.7. It also follows from the same argument that £¥ | 5k and Lk ‘%k,] have the same

eigenvalues. Moreover, the eigenvectors may be related by the following chain of implications:

x € 3%t A Dom(£¥) is an eigenvector of £¥ <= (6%)*8%x = Ax
— 5R(5%)* 6 x = Ao*x

= LFFTskx = Aok«
These eigenvectors x and §%x have the same eigenvalue.
5.3.1 Morphisms
Let 3 and G be Hilbert sheaves on the same GAC P. The existence of a spectrally well-behaved
Hilbert sheaf morphism ¢ : ¥ — G enforces a relationship between the spectra of Hilbert sheaf

Laplacian. We catalog a few results that relate the spectra o(£%) and o(£§) in the presence of

morphisms with different properties.
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Definition 5.3.8. Let ¢* : (X®, Vx,8%) — (Y*,Vy,8%) be a Hilbert complex morphism. ¢* is a bi-
morphism if ¢* is also a Hilbert complex morphism of the dual complexes ¢* : (X, V)”zl., dxe) —
(Yo, V\*;,., dvy.).

Bimorphisms constitute a class of Hilbert space morphisms that respect the sheaf Laplacian

and its up/down components.

Lemma 5.3.9. Suppose ¢ : F — G is a Hilbert complex morphism whose induced Hilbert complex
morphism ¢ : (C*(P;F),8%) — (C*(P;9),0%) is a bimorphism. Then for each k, *L% . = L ¥,
OFLY = L5 _dF and pFLE = L ¥

Proof. Using the bimorphism property of ¢°, we may check:

O*LE, . = (85) 9 185
= L§,+¢k'

Similarly, p*L% _ = £§ _¢*. By linearity, p*L% = LE*. -

Proposition 5.3.10. Let ¢ : I — G be a Hilbert complex morphism whose induced chain map ¢* is a
bimorphism. If G* is an isometry, then o(Lk) = o(L§). If d* is a co-isometry, then o(LE) = o(L}).

Proof. As a bimorphism, we have ¢*L5 = LEP¥. If $* is an isometry, precomposing with
(p¥)* yields L = (¢p*)*LEP*. The closed image M := R($¥) is an invariant subspace of L§,
in the sense that if x € R(¢p*) N Dom(L§), then LEx € R(d¥). It follows that (¢*)*LEPF =
(6%)* (£&|\) d*. The map ¢ is unitary onto its image, and o(L) = o(£LE|,,) S 0(L5). The
proof for a co-isometric ¢ is similar. O]

Corollary 5.3.11. Let ¢ : I — G be a Hilbert complex morphism whose induced chain map ¢°* is a
bimorphism. If G* is unitary, then o(L%) = o(L).

5.3.2 Eigenvalues

Hilbert sheaf morphisms between Hilbert sheaves also offer control over the eigenvalues of the
sheaf Laplacians. The control offered is especially meaningful when the Hilbert sheaf Laplacian

has discrete spectrum consisting of primarily eigenvalues.

Example 5.3.12. Let S' := {x € R? : |x| = 1} denote the unit circle in R?, and consider the
Hilbert sheaf

a4 d
L2(S1) —& 12(ST) «&— 12(Sh)
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with Lebesgue measure. This is a Hilbert sheaf by Theorem 4.4.17. A similar computation to
Example 6.1.8 shows the Laplacian £ : L2(ST) @ L2(S') — L2(ST) @ L?(S') is given by

O
g d%zz(f—g)

where &% denotes weak differentiation on L2(S"). The domain of £ is the Sobolev space H?(S').

ax?
Under the unitary change of variables (s, t)T = (f\ifq, %)T, the Laplacian £ takes the form

0 0
L= |-
[0 dexz]

We may now analyze the spectrum of £ component-wise. The first diagonal block 0 : L?(S') —
L%(S") has spectrum o(0) = {0}: an eigenvalue of infinite multiplicity. The second diagonal block
—de—xzz : L2(S") — L?(S") is a scaling of the usual Laplacian on the unit circle, and has spectrum
of all eigenvalues U(—de—zz) = {2k? : k = 0}, where 0 has multiplicity 1, and all other eigenvalues

have multiplicity 2. Therefore, the spectrum of £ is given by
o(L) = {0} U {2k? : k= 1}.

0ess(£) = {0}, and each positive value is an eigenvalue of multiplicity 2.

Remark 5.3.13. More generally, consider a network sheaf J of differential operators as in The-
orem 4.4.17. The Hilbert sheaf Laplacian £ is a (weak) differential operator on the direct sum
bundle of the vertex stalks. If the manifold underlying the smooth vector bundle on each vertex
stalk is compact, and the Laplacian £ is elliptic on ker(£)*, Then the spectrum o(£) will have
the form

o(L)={0} U{A¢ : k=T}

where 0es5(£L) = 0, and each Ay is an isolated positive eigenvalue of finite multiplicity.

Notation 5.3.14. Let A : X — X be a Hilbert space operator. Let M(A,\) denote the (cardinal)
multiplicity of A € C as an eigenvalue in the spectrum o(A).

Proposition 5.3.15. Let & : I — G be a Hilbert sheaf morphism with induced chain map ¢°* : C*(P;F) —
C*(P;9). If b* is an isometry for each k, then M(LY ,0) < M(LE ,0). If &* is an isometric bi-
morphism, then additionally M(L% _,0) < M(LE _,0)M(LK,0) < M(LE,0). Similarly, if $* is a
co-isometry for each k, then M(Lgr +0) < M(L? +0). If G is a co-isometric bimorphism, then addition-

ally M(£5 _,0) < M(Lk _,0), and M(L¥,0) < M(£L),0).
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Proof. ¢$* maps cochains in ker(illgr, ,) into ker(LE, ). If $¥ is an isometry, then dim ker(L; L) is
bounded above by dim ker(L‘élJr), and M(L§/+,O) < M(L‘é/+,0). When ¢* is a bimorphism, ¢p*
must map the space of harmonic cochains $% into %. When ¢* is an isometry, it follows that

M(LK,0) < M(LE, 0). The argument for co-isometries is similar. O

Remark 5.3.16. If ¢ is merely an injection on the k! grade, then M(L‘;/ L 0) S M(LE ,,0). If ¢ is

S+
merely a surjection on the k' grade, then M(L‘; +,0) = M(Lg +,0)

This result is not, in general, useful for understanding the Hilbert sheaf Laplacian. In general,
unless the images of restriction maps intersect in finite dimensional subspaces, the multiplicity
of zero as an eigenvalue of the sheaf Laplacian will be infinite. A more useful theorem for the

analysis of eigenvalues is the Courant-Fischer theorem [106, Theorem 12.1].

Theorem 5.3.17 (Courant-Fischer theorem). Let A : X — X be a positive operator on a Hilbert space
X. The eigenvalues of A (counted with multiplicity) lying below the essential spectrum oess(A) may be

enumerated in increasing order Ay < Ay < ---. The j"" eigenvalue \; is given by the formula
AX, X
Aj = inf sup < 2
b vex xeVADom(A) ]2
dim(V)=j X£0

Remark 5.3.18. For any compact interval I < R lying below the essential spectrum oess(A), there
can be at most finitely many eigenvalues of A lying in I.

Proposition 5.3.19. Suppose ¢ : F — G is a Hilbert sheaf morphism whose induced chain map ¢°
is an isometric bimorphism. Let L% and L¥ denote the restrictions of L% and L¥ to the orthogonal
complements ker(Lk)* and ker(L§)* respectively. Order the eigenvalues {N} of LY and {u;} of L¥,
below the essential spectra, in increasing order. The following hold.

(i) {A;} and {w;} can be put in one-to-one correspondence.

(Zl) [29] < )\j.
(iii) If o* (ker(LX)*) has finite codimension v < oo in ker(L¥)*, then . = Mj.
Proof. Let L% and ﬁ‘é denote the restrictions of £ and L§ to the orthogonal complements
ker(£X)1 and kelr(L‘?j)L respectively. Enumerate the eigenvalues of L& and E‘é below the es-
sential spectra in increasing order by {A;}; and {u;}; respectively.

As a bimorphism, $* and (¢*)* commutes with each grade of the Laplacian: L = LE*
and LRF(pF)* = (c[)k)*Llé. For y € ker(L‘é) we have (¢p¥)*y € ker(L). It follows that for

x € Dom(LY%) and y € ker(£§), that $*(x) L y, and hence $*(Dom(Lk)) < Dom(L§). M :=
$*(ker(£LK)1) is a stable subspace of E‘g.
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Using injectivity, each eigenvector { of £¥ is mapped to a unique eigenvector ¢p* () of ccfll_g.
Therefore the eigenvalues {A;}; and {y;}; can be placed in one-to-one correspondence. Further,
since ¢ is unitary onto its image, the eigenvalues of L are exactly the eigenvalues of ﬁ'é]M.
It follows from the Courant-Fischer theorem that u; < Aj, for all j. In particular, every subspace
V < ker(£%)* of dimension j is mapped by ¢* to a subspace ¢p*(V) = 1<e1r(L]§)L of dimension j.
Further, V »n Dom(£¥) is mapped by ¢* into ¢p*(V) n Dom(L§). There is an equality

k
wp SO Ey)
ernDom(L‘F‘) ”XH yeq)k(v)mDom(Llé) HUH
x#0 y#0

It immediately follows that u; < A;.

Finally, suppose that M has finite codimension r < 0 in ker(Lg)L. It directly follows from the
min-max formulation that if A; = p;, there can be at most r eigenvalues . between A; and A, 1.
That is, ., = A; for all j. O

5.3.3 Sheaf operations
Several of the sheaf operations (Section 4.5) interact with the Laplacian spectra in controlled ways.
The direct sum is the most straightforward.

Proposition 5.3.20. Let F,G : P — Hilby i be Hilbert sheaves. The sheaf Laplacian of the direct sum
F @ G satisfies
0 (L5gg) = 0 (L5) Vo (L)

Proof. As observed in Proposition 4.5.3, the coboundary operator of ¥ @ § decomposes as
85 og = diag(8k, 85) : C*(P; )@ C*(P; 9) — CHT1 (P ) @ CHT1(P; 9).

This diagonal operator acts on C*(P; F) and C*(P;§) independently, so 8% = diag(dk, 5) and
Lg@g = diag(ﬁlgr,ﬁg). Therefore o (L‘g@g) =o(L¥)uo (L]S’j) -

Pullbacks by covering maps also have well-behaved spectral properties for Bounded Hilbert
sheaves.

Proposition 5.3.21. Let ¢ : P — Q be a covering morphism of GACs, and F : Q — Hilby a bounded
Hilbert sheaf. There is an inclusion of spectra o (LX) € o (L‘g)*?).

Proof. The map ¢ induces a cochain map (®*)* : C*(Q; F) — C*(P; ¢*F) defined by

(@) (X)) . = Xp ()
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for each T € CX(Q;F). We first confirm that ®* is a bimorphism of Hilbert complexes. By the
definition of a covering map, one may check that for each T € C**1(P; $*F) and x € C*(Q; F),

(87 (@*)x) . = Z €p*5(9)Fp(g) (X (07))
O‘/Q]T
g:o’'—>1t

= Z er(f)TFr(xo)

o<1 d(T)
f:o—d(T)

_ (((D*)kJH 613‘)()1,,

which demonstrates that 61;* F(0*)F = (0*)*15K. A similar computation utilizing the pre-image
property of covering maps shows that (61;* ) ¥(@*)*FT = (0*)*(8%)*, making ®* a Hilbert space
bimorphism.

Next, observe that (©*) is a scaled isometry; identifying C*(P; $*F) =~ @™ C*(Q; F), the map
(@*)%(x) = @™ x. It directly follows that ﬁ(@*)k : C*¥(Q;F) — CH(P; ¢*F) defines an isometric

bimorphism. By Proposition 5.3.10, & (ngr) co (L‘é*?). O
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Part III

DYNAMICS
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6

LINEAR DYNAMICS

This chapter investigates dynamical systems on cellular sheaves valued in Hilbert spaces, fo-
cusing on heat flow and wave propagation. The sheaf Laplacian introduced in Chapter 5 natu-
rally generates a heat equation and a wave equation on cochain spaces, whose solutions exhibit
asymptotic behavior controlled by the spectral properties of the Laplacian. Beyond the classical
heat flow and wave propagation on cochains, we explore two dynamical systems unique to the
sheaf-theoretic setting: relative heat flows that solve harmonic extension problems dynamically,
and restriction map diffusion that evolves the sheaf structure itself toward a collection of re-
striction maps admitting a prescribed global section. These linear dynamics provide distributed
algorithms for solving networked systems of equations.

Section 6.1 establishes that the negative sheaf Laplacian —L¥* generates a contraction semi-
group via the Lumer-Phillips theorem, yielding well-posed heat flows for all initial cochains. The
long-term behavior of these flows is characterized through spectral decomposition: heat flows
converge to orthogonal projections onto harmonic cochains, with convergence in the strong op-
erator topology for general Hilbert sheaves and in operator norm for closed sheaves with spec-
tral gaps. Section 6.1.2 adapts the heat flow to solve harmonic extension problems dynamically.
Given boundary data on a subcomplex, we construct relative heat flows that either converge
to harmonic extensions when they exist, or diverge when the problem is ill-posed. Section 6.2
introduces a dynamical system that evolves restriction maps rather than cochains. For network
sheaves with fixed stalks, we derive gradient flows on spaces of bounded operators. The analysis
distinguishes between general Banach space settings and the geometric case of Hilbert-Schmidt
operators, the latter of which can be identified as a heat flow of a different sheaf Laplacian. Sec-
tion 6.2.2 examines joint dynamics where cochains and restriction maps evolve simultaneously
as a coupled system. The chapter concludes with an analysis of the wave equation on a Hilbert
sheaf. Unlike heat flow, wave propagation does not converge, instead exhibiting oscillatory be-

havior, the time-average of which is a harmonic cochain.

6.1 HEAT FLOW

Let I : P — Hilbg i be a Hilbert sheaf with associated Hilbert complex ( C(»9), 6'). Each grade

of the sheaf Laplacian £¥ is a positive operator (Theorem 3.2.21). Using the spectral theorem
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and the Lumer-Phillips theorem, one may show that —L¥ is the infinitesimal generator of a
contraction semigroup on C*(%P;F). We prove this as a general lemma.

Lemma 6.1.1. Let A : X — X be an operator on a separable Hilbert space. If A is negative, then A is the
infinitesimal generator of a contraction semi-group.

Proof. We present the proof for real Hilbert spaces, as the argument can be straightforwardly
adapted to complex Hilbert spaces. Let (Q,n), ® : X — LZ(Q; n), and f : Q — R satisfy the con-
ditions of the spectral theorem for A. If M¢ generates a contraction semigroup T on L?(Q, 11; R),
then ®TO~! is a contraction semigroup on X with generator A. Hence it suffices to check that
M satisfies the conditions of the Lumer-Phillips theorem.

M is self-adjoint, and hence is densely defined. Since f(w) < 0 for p-almost every w € Q, M¢
is dissipative. Finally, every positive A € R is in the resolvent p(My). Since My is closed, it follows
that M — Al is a surjection for all A > 0. Therefore M¢ generates a contraction semigroup on
L*(Q, 5 R). O

Applying Lemma 6.1.1 to —£L* shows that —£¥ is the infinitesimal generator of a contraction
semigroup on C*(P; F).

Definition 6.1.2. Let F : P — Hilbg i be a Hilbert sheaf with sheaf Laplacian £*. The k''-heat
semigroup of JF is the semigroup exp(—t£L*) on C*(P; F). Given a k-cochain xy € C*(P; F), the
heat flow of x¢ is the path

x; = exp(—tL*)xo.

As a Co-semigroup, the heat flow x; = exp(—t£L¥)x is a mild solution to initial value problem:

x = —L*x,

x(0) = xo .

In particular, when x¢ € Dom(Lk), the heat flow is a classical solution to the initial value problem.

6.1.1 Long term behavior of the heat flow

Since the heat semigroups of a cellular sheaf J are generated by a negative operator, we get an
additional property: controlled dynamics as t — oo. We start with a general lemma.

Lemma 6.1.3. Let e* be a contraction semigroup on a separable Hilbert space X generated by a negative
operator A : X — X. Let P : X — X denote the orthogonal projection onto the kernel ker(A). As t — o,

the semigroup e** converges to P in the strong operator topology.
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Proof. Let (Q,u), ® : X — L*(Q,1;R) and f : Q — R satisfy the conditions of the spectral
theorem for A. Notice that To(t) := Meyp(tr) defines a contraction semigroup on 12(Q,;R)
with generator M¢. For any k € ker(Mys), the support supp(k) must be contained in the set
{we Q: f(w) =0}, up to a set of a measure zero. It follows that Mexp(ir)k = k for all t > 0.
Now for any g € ker(M¢)t < 12(Q,1;R), the function Gy = exp(2tf)g? converges pointwise
to 0 almost everywhere as t — o0 since the essential range of f is non-positive. Moreover, G is
dominated by g2, which is integrable. The dominated convergence theorem now ensures that

LM [Mexpirg)* = lim J Gydu = 0.

Therefore Meyp (1) converges to the orthogonal projection onto the kernel of Mt in the strong
operator topology. Identifying et* = @~ Mexp(tr)@ proves that e'* — P in the strong operator
topology as well. O

Lemma 6.1.4. The result of Proposition Lemma 6.1.3 holds when X is not separable as well.

Proof. Suppose X is not separable. We use Zorn’s lemma to prove that X can be decomposed into
a (possibly uncountable) direct sum X = @, ; W; where each W; is separable and A is stable on
each W;.

Let D denote the collection of all decompositions X = (P);.; Wi) ® Z, that satisfies the follow-

iel
ing conditions.

1. Each W; is non-empty and separable.
2. A is invariant on Z and on each W;.
3. Either Z = 0 or Z is not separable.
We may partially order D according to the following rule:
[((—BW1> DZ< (6—) Wj’> @Z’] — [3 an injective map f: [ — Js.t. W, = Wé(i)] :
iel je]

That is, the J-decomposition further peels off more separable Hilbert spaces from Z. Since every
chain in D is bounded, we may use Zorn’s lemma to take a maximal decomposition in D.

Now suppose (P;.; Wi) ® Z is a decomposition and Z # 0. Take v € Z to be any non-zero
vector, and A € p(A) be any value in the resolvent set with corresponding operator Ry := (A —
AT Let [v] := {v,R\v,R3v, ...} denote the orbit of v under R, and set

Z, := span|v].
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The space Z, is closed, A-invariant, and has a countable basis given by [v], making it an invariant
separable sub-Hilbert space of Z. Moreover dim(Z,) > 1. Consequently,

iel

(@wi> DZ< (@Wi> DL, ®(Zin2).
iel

Thus if Z # 0, the decomposition cannot be maximal. Therefore the maximal decomposition from
Zorn’s lemma is a decomposition of X into separable, stable, subspaces.

Wi
be a decomposition of X into separable sub-Hilbert spaces such that A(W;) < W; for each i € L.

Applying the separable case on each component proves the general result. Let X = @);;
For x € X, there is a countable sub-index set ] < I such that xo = };c;(x0)j, where each (xo);
is the W; component of xo. By the separable case, each e'*(xo); — 0 as t — co. It follows that

tA

e"*xp — 0 as well. O

We now return to the Hilbert sheaf Laplacian £* : CX(P;F) — C*(P;F). The application of
Lemma 6.1.4 to the k" heat semigroup yields the following theorem.

Theorem 6.1.5. The k' heat semigroup exp(—tL¥) converges in the strong operator topology as t — oo
to the orthogonal projection operator P : C*(P; F) — CX(P; F) onto the space H* of k-harmonic cochain.
In particular, for all xo € C*(P;F), the heat flow x, converges to the nearest harmonic cochain as t — 0.

Corollary 6.1.6. A heat flow in CO(P; F) with initial value xo converges to the nearest global section to

X0.

Remark 6.1.7. When the Hilbert sheaf J : P — Hilbg 1 is not proper, there is no guarantee that
the kernel of the block operator §* is closed; hence ker($%) may be merely a dense linear subspace
of ker(8¥) = $¥, and the limit lim_,,, x; of a heat flow on C*(P; F) may not be in the kernel of
the block operator 5%. This represents a genuine distinction from the finite dimensional theory of
dynamics on weighted sheaves. However, when J : P — Hilby is a bounded sheaf, convergence
to a point in the kernel of the block operator 8* is guaranteed.

Example 6.1.8. We return again to the simple Hilbert sheaf

d

L2(R) —% L2(R) e L2(R)
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from Example 4.4.5 and Example 5.1.4. The heat flow (f, g¢)" € L?(R) ® L?(IR) with initial value
(fo, go)" obeys the differential equation

2
f_ [ az(f—9)
2
g L(g—1)
Making the change of variables
ue = ft + gt
vi = fr — gy,
we may compute u = 0 and v = —de—)fzv. That is, v¢ obeys the heat equation on IR, and dissipates

to 0 as t — o0. Hence taking limits, we see that fo, + goo = fo + go and fox — goo = 0. It follows
that foo == goo - fo; 0.

Example 6.1.9. Let M be a compact real Riemannian manifold with canonical volume form . Let
L2(M; 1) denote the space of square integrable real-valued functions on M. The Laplace-Beltrami
operator AP is the operator A = d*d, where d : L>(M; n) — L?(T*M) is the gradient operator.
The domain of A8 is taken to be the maximal domain. We get a Hilbert sheaf

L2(M; ) —% 12(T*M) «+2— 0

with coboundary operator & = [—d 0]. This is sheaf is proper, with corresponding sheaf Lapla-
cian
—AY™ 0
0 0

L=

The induced heat flow f; = exp(tAlB) is the usual Laplace-Beltrami based heat flow on f €
L%(M; ), and f; converges as t — o to the nearest harmonic function in L?(M; ). Hence the

usual Laplace-Beltrami heat flow may be recognized as a special case of heat flow on a Hilbert
sheaf.
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Example 6.1.10. Consider the Hilbert sheaf

i j
L2(10,1]) = L2([0, 1)) @ L2([0,1]) -1 L2([0, 1]

with corresponding sheaf Laplacian

on domain H%([0,1]) @ H'([0,1]) < L2([0,1]) ® L?([0,1]). The induced heat flow (fi,g¢)" con-
verges to the nearest point (fy, goo)T such that f/, — g, = 0 and o, — goo = 0. That is, fo, must be
a weak solution to the ODE f/, = fy, so fo(x) = Ce* almost everywhere for some C € R.

Example 6.1.11. Let § = (V, £) be a finite network and ¥ : § — Hilbg i be a Hilbert sheaf of
differential operators, as in Theorem 4.4.17. Let B — M denote the smooth vector bundle on
each object o € € U V. The coboundary operator & : C°(G;F) — C'(G;F) decomposes as a block
operator & = [dey] over vertex-stalks and edge-stalks; for v a bounding vertex of an edge e, the
block ¢y : F(v) — F(e) is given by

fiv—e

This is a (weak) differential operator and the coboundary operator encodes a networked system
of homogeneous linear differential equations. A global section x of J exactly corresponds to a
solution to this networked system; for each edge e with distinct bounding vertices u, v, x,, and
x, are smooth sections of By, and B, respectively such that 8¢y, Xy = devXy. For an edge e with a
unique bounding vertex v, we instead recover d¢yX, = 0. The heat flow of F exactly converges to

such a solution to the networked differential equation.

The rate of convergence of heat flow is controlled by the spectrum of the sheaf Laplacian £*
through the following theorem.

Proposition 6.1.12. Let F : P — Hilby i be a Hilbert sheaf. Suppose either 0 ¢ o(L¥), or 0 is an isolated
eigenvalue in o(L¥). The heat semigroup exp(—tL¥) converges in the operator norm to the orthogonal
projection operator P : C¥(P;F) — C*(P; F) onto H*.
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Proof. Let £k : ker(£¥)+ — ker(£¥)! denote the restriction of £* to the orthogonal complement
of its kernel. Since 0 is an isolated eigenvalue of L¥, there is an r > 0 such that A > r for all
A € o(L¥). By the spectral theorem, we may bound ||exp(—tL¥)|op < e~ '7, from which it follows
that exp(—tL¥) — 0 in the operator norm. It directly follows that exp(—tL¥) converges to P in
the operator norm. O

Remark 6.1.13. In the preceding proof, the larger the value of r > 0, the faster the convergence
of exp(—tL¥) “P, P. Hence we see that the rate of convergence is controlled by inf o(£*). When
inf o(£*) = 0, the convergence is merely in the strong topology, and distance bounds for cochains
cannot be given uniformly in norm.

The following corollary follows since closed Hilbert sheaves have spectral gaps (Corollary 5.3.5).

Corollary 6.1.14. When F : P — Hilbg y is a closed Hilbert sheaf, each heat semigroup exp(—tL¥)
converges in the operator norm to the orthogonal projection P* onto k-harmonic cochains.

6.1.2 Relative heat flows and harmonic extension

Let 7 : P — Hilb i be a Hilbert sheaf, and B be a subcomplex of P. Suppose the domain of the
sheaf Laplacian £ splits over the decomposition C*(P;F) =~ C*(P, B; F) ® CX(B; F), and write

K k

= Lin L
K K

Liu L3

Given y € Ck(B;?), we may try to form a heat flow for x e Ck(fP,B;CF) that converges to a
harmonic extension of y. The dynamics of x should obey

: k k
X = _Lulux - LU,BY'

We may again use semigroup theory to tackle this problem. Note that Lﬁ,u can be extended to a
positive operator; it is positive symmetric and densely defined, and has a self-adjoint Friedrichs
extension. Hence _Ll‘i,u is the infinitesimal generator of a contraction semigroup exp(—tL{j/u) on
Ck(iP, B;F). As observed in Section 5.2, y will have a harmonic extension exactly when Lﬁrgy €
:R(Lﬁ,u)- When this is the case, take w such that Lﬁ,uw = Lﬁﬁy, and define the relative heat flow
of xo € C*(P, B; F) to be the path:

Xt = exp(—tL]f(,u)(xo + W) —w. (1)
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One may check that this is a mild solution to the initial value problem:

X = —Lux— Lz,
x(0) = xo.

The path x; is well-behaved asymptotically. By Lemma 6.1.4, exp(—t£ ]ﬁu) converges in the strong
operator topology to the orthogonal projection operator P onto the kernel ker(Lﬁ,u) ast— 0. It
follows by some simple geometry that xo,, = P(xo + w) — w is the closest point to xo in C*(P, B; F)
that solves the harmonic extension problem for y. We have proven the following theorem.

Theorem 6.1.15. Let § : P — Hilbg i be a Hilbert sheaf, and B be a subcomplex of P. Suppose the
domain of the sheaf Laplacian L splits over the decomposition C¥(P;F) = C*(P,B;F) ® C*(B;F). Let
y € CX(B;F) and w € C*(P,B;F) such that L{j/uw = L{jlgy. For all xo € C*(P,B;T), the relative
heat flow x¢ = exp(—tﬁﬁlu)(xo + W) — w converges to the closest point xo, € C*(P, B; F) such that
L Xoo + L5 5y = 0.

For an ill-posed harmonic extension problem, the relative heat flow diverges. For any y €
C*(B; F), we may define a relative heat flow that acts as a mild solution to x = —Lﬁ,ux - Lﬁ,gy
using variation of constants. In particular, set T(t) = exp(—tLﬁru) and L{iﬁy = bier + by, L Where
byer € ker(Lﬁ/u) and b, . € ker(Lﬁ’u)l, and define the relative heat flow*

t

x¢ == T(t)xo + J T(t— S)Lﬁ,By ds
0

t t

T(t — s)byer ds + J T(t—s)b, .. ds.
0

= T(t)Xo + f

0
We now analyze these three pieces separately. As t — o, T(t)xo converges to Pxo, where P
is the orthogonal projection onto the kernel of Ll‘i,u- Since T(t)bger = byer for all t > 0, we
may write Sé T(t — s)byer ds = tbye,. Finally, it can be seen through the spectral theorem that

SS T(t —s)by,,. ds either converges to a point (if b1 € R(Ly,,), putting us in the previous case)

ker
or grows sub-linearly. In either case, the linear growth of the tby., dominates, and the relative
heat flow diverges to infinity.

The relative harmonic flow can be used to detect when a harmonic extension problem has a
solution. Simply check if the relative heat flow converges; if it does, the limiting value is a solution

to the harmonic extension problem. If the relative heat flow diverges, there is no solution.

When there is a w € Ck(fP,B;?) such that L‘ﬁ,uw = L‘fmgy, this expression for the relative heat flow reduces to
equation (1).
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6.2 RESTRICTION MAP DIFFUSION

We now turn our attention away from heat dynamics on spaces of cochains of a Hilbert sheaf, and
consider evolving restriction maps according to a heat flow. We work over a network § = (V, €)
with a given choice of vertex and edge stalks. Instead of driving a cochain xo € C° toward a
global section, we designate a fixed cochain x and drive the restriction maps themselves toward

a sheaf for which xy is a global section.

Definition 6.2.1. Let § = (V, ) be a finite multigraph (allowing self-loops). A network Hilbert
sheaf on § is a Hilbert sheaf J : § — Hilbg i, where G is viewed as a weakly regular cell structure.

For the entirety of this section, fix a finite multigraph G, and a function F : Ob(G) — Ob(Hilby,).
We think of F as a choice of a stalk for each vertex and edge of G, without a corresponding
assignment of restriction maps. The function F may be extended (non-uniquely) to a network
Hilbert sheaf J by specifying restriction maps. We let BHilbShvy (G; F) denote the set of all such
bounded extensions. Since there are no commutativity constraints for restriction maps that must
be satisfied on a network Hilbert sheaf, there is a one-to-one correspondence between sheaves in
BHilbShvy (G; F) and a choice of a bounded linear operator for each morphism of .

Given a pair of Hilbert spaces X and Y, let B(X,Y) := Hilby(X,Y) denote the space of bounded
linear operators X — Y. The operator norm | — |op gives B(X,Y) the structure of a Banach space.
Consequently, we may identify BHilbShvy (G; F) with the Banach space

BHilbShv, (G;F) = P B(F(v),F(e)) < B(CO(G;F), C'(S;F))

fiv—e

where the direct sum is taken over all non-identity morphisms in G.
Fix a bounded network Hilbert sheaf F € BHilbShvy (G; F) and a zero-cochain x € C°(G; F). Let
e be an edge of G, with incoming maps F: v — e and g : u — e. Consider the evolution

ST = —(T4(x) ~ Tg ()X @)

where x} := (—,x,) is the bounded linear functional on F(v) induced by x,. Applying these
dynamics to each restriction map J¢ yields a coupled system, and a corresponding first order

autonomous linear dynamical system
F=w(T) 3)

on the Banach space BHilbShvy (G; F). We call this system restriction map diffusion.
To analyze the long-term dynamics of restriction map diffusion, we use the following lemma.
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Lemma 6.2.2. Let X,Y be Hilbert spaces, x # 0 a point in X, and A : B(X,Y) — B(X,Y) the bounded

linear map A := ¢ (x)x*. The initial value problem

¢ =-Ad
$(0) = do

has a unique solution ¢ in B(X,Y) that converges to a well defined limit ¢, = lim_,o, b which is the
closest point to ¢ in ker(A).

Proof. The map A has a non-trivial kernel consisting of exactly those ¢ € B(X,Y) that vanish
on xo. For any ¢, we may compute A2¢ = |x|*Ad, witnessing that the range R(A) of A is an
eigenspace of A with eigenvalue ||x|?. Writing

1 1
¢ = <¢ - A(b) A
]2 Ix]12
witnesses a direct sum decomposition B(X,Y) = ker(A) ® R(A). The spectrum of A is now given
by o(A) = {0,]x|?}, which is real, non-negative, and has an isolate eigenvalue at 0. Chapter 2

section 2 of [34] now ensures the dynamical system

¢ = -Ad
$(0) = o

has a unique solution ¢ for each initial value ¢, that converges to ¢, = o — WA(I)O'
Consider the projection map P : X — ker(A) by P(d) = ¢ — WAq). This map has operator
norm |P|op = 1, so P(¢) is the nearest point to ¢ in ker(A) [114]. O

To use this lemma to analyze restriction map diffusion, notice that the pairs of restriction maps
into each edge of G evolve independently from one another. Consequently, each edge-component
de of the coboundary map 6 evolves independently. Let e be an edge of G, with incoming covering
maps f: v — e and g : u — e, where it is possible that u = v. The coboundary component &,
viewed as a linear map &, : F(v) ® F(u) — F(e) evolves in B(F(v) @ F(u), F(e)) according to

6.6 ) _66 (XV) (Xv) | (4)
Xu Xu

Notice that these dynamics on 6. are equivalent to the dynamics on the restriction maps into e,
as

Se = [—fff 959] = (?gxu_ffuxv) [Xt Xi] ’
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after possibly expanding the domain of 5. to F(u) ® F(u) when u = v. Applying Lemma 6.2.2
initialized at %5, to this system yields a solution *5., which converges to the nearest operator
*§. such that (x,,x,)" is in the kernel of §.. Taking a block-operator representation for 5. gives
evolutions 'F¢ and 'F.

Applying these dynamics to each edge simultaneously yields dynamics *F¢ for every restric-
tion map f in §; combining these paths in the Banach space BHilbShvy(§; F) gives an evolution of
sheaves 'J starting from the initial bounded Hilbert sheaf °F. The limiting sheaf ©*J = lim{_,,, 'F
is the closest sheaf to °F for which x is a global section. We have proved the following theorem.

Theorem 6.2.3. Let § = (V, &) be a network and F : Ob(G) — Ob(Hilby) be a choice of a Hilbert
space for each vertex and edge. Let °F be an initial choice of a bounded Hilbert sheaf extending F, and
X € CO(S ; F) a fixed choice of a zero-cochain. Restriction map diffusion on BHilbShv(G; F) has a solution
tF, which converges as t — oo to the nearest network sheaf of Hilbert spaces for which x is a global section.

6.2.1  Hilbert-Schmidt restriction map diffusion

Under additional hypotheses on the admissible restriction maps, we may view these dynamics
as taking place in a Hilbert space and converging to an orthogonal projection in sheaf-space. Say
that a Hilbert sheaf J : P — Hilby, is a Hilbert-Schmidt sheaf if each restriction map is Hilbert-
Schmidt. For such a Hilbert sheaf, all coboundary operators §* and sheaf Laplacians £* are also
Hilbert-Schmidt operators.

The operator A : HS(X,Y) — HS(X, Y) that acts by A($) = $(xo)x§ for some fixed xo # 0 is a
rank-one operator, and consequently is Hilbert-Schmidt. It follows that restriction map diffusion
in B(X,Y), when started from a Hilbert Schmidt operator stays inside of HS(X,Y) < B(X,Y)

(with the derivative taken with respect to the operator norm). Moreover, the bound || — [op <
| — |us, ensure that the derivative in HS(X, Y) with respect to || — |op agrees with the derivative
with respect to | — |us, whenever the | — |gs-derivative exists. Applying this to restriction map

diffusion yields the following corollary to Theorem 6.2.3.

Theorem 6.2.4. Let § = (V, ) be a network and F : Ob(G) — Ob(Hilby) be a choice of a Hilbert space for
each vertex and edge. Let °F be an initial choice of a Hilbert-Schmidt sheaf extending F, and x € C°(G; F)
a fixed choice of a zero-cochain. Restriction map diffusion on the Hilbert space of Hilbert-Schmidt sheaves
has a solution *F, which converges as t — oo to the nearest Hilbert-Schmidt sheaf for which x is a global
section.

The projection onto the nearest sheaf for which x is a global section is now properly an orthog-
onal projection with respect to the Hilbert space structure of Hilbert-Schmidt operators.
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Remark 6.2.5. The Hilbert-Schmidt setting reveals that restriction map diffusion is itself a heat
flow. Let X,Y, Z be Hilbert spaces, and take non-zero fixed points x € X and y € Y. Let ®x :
HS(X, Z) — Z denote the evaluation map ®xA = Ax, which has adjoint ®*z = —zx*. Define @y
similarly. The heat dynamics for the Hilbert sheaf

HS(X, 2) X, Z v HS(Y, Z)

evolves A € HS(X, Z) and B € HS(Y, Z) by

A _ (Ax — By)x*
B (By —Ax)y*

These are essentially the dynamics of restriction map diffusion. Indeed, given a Hilbert-Schmidt
network sheaf F : § — Hilby, and a zero-cochain x € CO(S; F), we may build a new network
sheaf on Map(J,x) : § — Hilby with the following data.

¢ Stalks. For each vertex v, let E,, denote the collection of edges bounded by v. The vertex
stalk Map(F, x)(v) is the direct sum

Map(F,x)(v) = P HS(F(v), F(e)).

eckE,,
The edge stalks Map(J, x)(e) = F(e) are unchanged from F.
* Restriction maps. For each map f : v — e, the restriction map Map(J, x) is given by

Map(F,x)¢(A) = Ae(xy)

where A, is the e-component of A € @ g, HS(F(v), F(e)) and x, is the v-component of x.

By the previous analysis, heat flows on the Hilbert sheaf Map(J,x) exactly encodes restriction

map diffusion.
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6.2.2 Joint dynamics

On a Hilbert-Schmidt network sheaf J : G — Hilby j with a choice of a cochain xy € C°(5; F), one
may diffuse both the cochain x; and the sheaf 'F simultaneously. These joint dynamics evolve

according to

X = —ad*dx

se = _ﬁ"sexexz ’

where x, is the pair of components of x in the stalks over the vertices bounding e. Additionally,
o, 3 = 0 are real parameters that control the comparative speeds of the cochain diffusion and the
restriction map diffusion.

The first step toward understanding joint dynamics is to recognize this system as gradient
descent. Let HS(C®, C") denote the Hilbert space of Hilbert-Schmidt operators between zero-
cochains and one-cochains, and HSCbdry < HS(C®, C') the space of coboundary operators,
having the correct sparsity pattern as block operators. We work in the space

Z:= C°(S; F) ® HSCbdry

as the dynamics on each component 6. induces dynamics for the whole coboundary matrix by
5 = —P(8x)x*. To recover the o and B coefficients, we renormalize our stalks by premultiplying
by the diagonal block operator M : Z — Z that scales the cochain component of Z by « > 0 and
the coboundary map component of Z by 3. This renormalization induces a new inner product
(z1,22)m = {z1,Mz3)z on Z. The induced norm of (—, —)m is equivalent to the norm induced
by (—, —)z as a direct sum. Consider the potential function

X 1
V)=l
b
The gradient of the potential function V : Z — R with respect to (—, —)nm is given by

ViV x| _ od*dx

5 BP(dx)x*
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and consequently we recover our dynamics in Z as the gradient descent

):(t _ _VV Xt
Ot Ot

Proposition 6.2.6. The initial value problem

z=-VVz
z(0) = zo

has unique global solutions for all z.

Proof. VYV is locally Lipschitz, so the Picard-Lindelof theorem [15] promises unique local solu-
tions. We check that

d

EHZt I = {ze,2e)m

2 2 2
= —o[[8exe]|fa — 2B ) [8exel R lxel R
eel

<0.

Therefore trajectories are bounded, and the unique local solutions can be globally extended. [

Convergence of joint dynamics to a pair (X, 5OO)T with d,x = 0 is difficult to guarantee. One
would like to use Lyapunov theory, but the infinite dimensional setting has caveats. Consider the

following version of LaSalle’s invariance principle, due to Hale [51, Theorem 1]

Lemma 6.2.7. Suppose u is a dynamical system on a Banach space X. If V is a Lyapunov function on
A < X and an orbit x¢ of u belongs to A and is precompact, then x converges to a point in the largest
invariant set in S = {y € A : V(y) = 0}.

The requirement of precompact trajectories is quite restrictive; without precompactness, a tra-
jectory x¢ can spiral through infinite dimensions, dissipating the potential energy V(x¢) to zero,
yet not converging. There are a dearth of tools to find precompact trajectories for joint dynam-
ics. In particular, the linearization of the second derivative of the potential function V does not
have a finite dimensional kernel, preventing the use of a Lojasiewicz-Simon inequality [23, 56,
113]. Nonetheless we can prove some conditions under which the dynamics converge. For ease
of notation, we work in the case that « = 3 = 1, as though we have already renormalized via the
operator M.
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To begin, we define a collection of quantities associated to the evolution of (xt, ét)T. We set:

Pt = x|

qe = [ 5]

Tt i= P% - q%
St = [|0ex¢

Vt = V((Xt, 6t)T).

Lemma 6.2.8. The quantities p¢, q¢, T, St, Vi satisfy the following.
(i) &p? =—-4Vy <.

(ii) $-qf = =4V <0,

(i) fre =0.

(i0) st = =2(|88exe]* + [P(Sexext)[?).

(0) Ve = —([88exc]* + [Poexext[?).

Proposition 6.2.9. If (infi~o pt) > 0, then (x¢, d¢) converges to an equilibrium point of V. In particular,

this condition is satisfied when r > 0.

Proof. The arc-length of the trajectory (xy, 5¢)T

fe Zt dtzLoo\/(—Tt)dt.

0

in Z is given by the integral

Hence the trajectory has finite arclength if and only if 4/(—V;) is integrable over the interval
[0,0). A sufficient criterion for this integrability is to find a bound of the form Vi < —kV; for a

positive constant k; this implies an upper bound:

—Vi = ||858ex¢ |2 + [Poexext||?
<2(qf +p)Ve
< 2(q5 +p5) Voe ",

from which we conclude +/ —Vt is integrable. To find such a bound, we work with the following
upper bound on V;:

Vi = — (|88 2 + [Pooxext )
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< -2ptVi

By hypothesis, inf; py > 0, giving the required bound. Every path of finite length is precompact,
so LaSalle’s invariance principle (Lemma 6.2.7), the trajectory (x, 8) converges to an equilibrium
point (X0, 800) T such that ,,x = 0. O

Remark 6.2.10. This proposition effectively says that so long as x; does not converge to 0, then the
joint dynamics (xt, 8¢) " must converge to some equilibrium point. Therefore if we can bound p
below, joint dynamics converge nicely. For example, when t = pZ — q7 > 0, we know py > /T > 0
for all t. Moreover, while the coboundary component §; (and hence the sheaf 'F) need not

converge, joint dynamics always converges in the zero-cochain component.
For another criterion, we may adapt proposition 7.2.3 of [52] by the exact same argument.

Corollary 6.2.11. Let Ky := 878y — x¢x} be an operator from C°(G;F) — CO(G;F). If there is a vertex v
such that Ky is not positive semidefinite on the stalk F(v), then joint dynamics converge.

For yet another criterion, we may compare |xo| to the norm of its initial image |50Xo |-

Corollary 6.2.12. If |xo| > [d0xXol|, then joint dynamics converge.

Proof. Consider the quantity @ (t) = ;—%2 = ”‘i;ﬁ!z. We may compute the derivative:
2(:2Y/ _ 2(p2)/
id)(t) _ Pi(st) 4St(pt)
dt Pt
2([3exe]* — [xe[?[8F8exe]?)

~

x|

By the Cauchy-Schwartz inequality, we may bound [8ix¢|* < |jx¢|?]6}8¢x¢|?, from which we
conclude %@(t) < 0. Therefore if |xo|? = [[Soxo0|?, then |x¢[? = [S¢x¢|? for all t. If |jx¢| — O,
then ||5¢x¢| — 0 as well, and (x¢,8¢)" — (0,0)7, proving that joint dynamics always converge for
such a starting point. O

6.3 WAVE PROPAGATION
While heat flows dissipate energy and converge to equilibrium states, wave dynamics preserve

energy and exhibit oscillatory behavior. This section develops the theory of wave propagation on
Hilbert sheaves, extending the classical wave equation to the sheaf-theoretic setting. On a suitable
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energy space £¥, the wave operator W* generates a unitary semigroup whose orbits solve the
second-order wave equation x = —ZL¥x. While individual trajectories oscillate indefinitely, their
time averages exhibit convergence properties that enable distributed computation of harmonic
cochains, in line with the finite-dimensional case on a weighted cellular sheaf [115].

Definition 6.3.1. Let ¥ : P — Hilbg; be a Hilbert sheaf. Let £* : C*(P;F) — C*(P;F) be the
kth-sheaf Laplacian as usual, and let £¥ : ker(£*)t — ker(L¥)! denote its restriction to the
stable subspace ker(£¥)1. Let (£¥)!/? denote the unique positive square root of L¥. Define the
k'h-energy space of F to be the Hilbert space £* := Dom ((£¥)!/?) @ ker(£¥)! with the inner

product:
<< ) ( )> = (892501, (29) 50 ) + o).
Y1

Remark 6.3.2. When passing from C*(P; ) to the energy space £, we ignore the components
of cochains in the kernel of (£¥)!/2. Essentially, cochains in (£*)'/2 carry no energy, and are
implicitly fixed by wave dynamics.

Definition 6.3.3. Let J : P — Hilb ; be a Hilbert sheaf. The k!"-wave operator Wk : €% — &K is
the block operator
we_| 0T
~Lk 0

with domain Dom(W¥) = (Dom(Z*) @ Dom((£*)1/2) c &k.

The operator WK is a closed, densely defined, and can be seen to be skew-adjoint; WK satisfies
(WK)* = —WX. To confirm this, we first check that W* is skew-symmetric. For (x1,y7)" and
(x2,Y2)" in the domain Dom(W*), we compute:

AN <(m) ),

L9 2y1, (8922 ) |, —(B*x1,u2) e

= _<(L )l/ZX]/(L )1/292>Ck + <UIIZkX2>Ck

GG

This confirms that W¥ is skew-symmetric. It is straightforward to check that Dom(W¥) is the
maximal domain on which the adjoint can be defined, confirming that W* is skew-adjoint. By
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Stone’s theorem [100], W¥ is the infinitesimal generator of a strongly continuous one-parameter

unitary group U(t) := etW" on €.

Definition 6.3.4. Let 7 : P — Hilbg j be a Hilbert sheaf with sheaf Laplacian £¥. The k''-wave
group of F is the strongly continuous one parameter unitary group exp(tW*) on the energy space
€*, where W¥ is k-wave operator. Given an initial point (xo,yo)" € €¥, the wave propagation
of (xo,y0)" is the path

= exp(tW¥) xo

Yt Yo
in k.
Remark 6.3.5. Let (x¢,y¢)' be the wave propagation of an initial value (xt,ye)". Using the prop-

erties of semigroups, we have that (x¢, Vi)' = W(xt, yt)" = (yt, —£Lx¢)". It follows that the first
component x; is a solution to the wave equation

X = —Lx (5)

subject to initial conditions x(0) = xo and x(0) = yo. Accordingly, we will often denote the wave
propagation (x¢, Xt).

Remark 6.3.6. Since the wave group etV : ¢ — €¥ is a globally defined unitary operator
for each t, the energy norm |(x¢,X¢)||¢ is constant. This may also be confirmed through direct
computation. Even though ||(x¢, X¢)||¢ is constant, it is possible that ||x¢| diverges to infinity in

Ck(P; F).
6.3.1  Solutions of the wave equation

Proposition 6.3.7. Let F : P — Hilby y be a Hilbert sheaf, and let W* be the k'-wave operator. The
spectrum of W¥ is purely imaginary and given by

o(W¥) = {£Ai :Ae (L)}

Proof. This is a general fact about block operators of the form of W*. We handle the case where
J is a complex Hilbert sheaf—the real case follows via complexification. A value A € C is in the
spectrum of W¥ if and only if the operator (Al — W) fails to be boundedly invertible onto its
image. Solving the equation (AI - W)(x,y)T = (w,z)T yields the system:

(L +A2D)x = 2+ Aw
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Yy =Ax —w.

Hence (A — W) has a bounded inverse if and only if (£ + A?I) has a bounded inverse. This is
equivalent to the statement that M e G(ﬁk), from which we derive that

o(W¥) = { £ i : A e a(L)}.

Since L¥ is a self-adjoint operator (and hence has a real spectrum), the spectrum of W is purely
imaginary. ]

More can be said by restricting our attention to eigenvalues. For simplicity, assume we’re
working with a complex Hilbert sheaf—the following results can be adapted for real Hilbert
sheaves through complexification. When (A, u) is an eigenvalue-eigenvector pair for £*, we get a
corresponding duo of eigenvectors for Wk, z+ = (u,iwu)" and z~ = (u, —iwu)T where w = V/A,

T and z~

with corresponding eigenvalues iw and —iw respectively. We call the eigenvectors z
normal modes of W. Normal modes represent purely-oscillatory solutions to the wave equation.

When £¥ (and hence W¥) have pure point spectrum, every wave propagation can be expressed
as an infinite sum of normal modes. In particular, we may write (xo,%o)" = 2reo (LK) ayzy +

[ i . . . T
a, z,, where ay € C is a scalar. We may now express the wave propagation (x¢,X¢)' as

(x¢, %) = Z (1;[6“5%;\r + a;e"ﬁtz;.

Aeo (L)

However, the sheaf Laplacian will generically fail to have pure point spectrum. We may nonethe-
less arrive at a similar representation through spectral calculus. We start with the following
theorem.

Theorem 6.3.8. The wave propagation of (xo,Xo)' can be represented as

(Xt) _ (Cos (t(flk)VZ)xo + (ﬁk)—wz sin (t(ﬁk)1/2)*o)

Xt —(L¥)"? sin (£(L*)1/2)x0 + cos (t(L¥)1/2)xq

Proof. Let U(t) := exp(tW¥) denote the wave group. We may write U(t) = C(t) + S(t), where
C(t) = $(U(t) + U(-1t)) and S(t) = 7 (U(t) — U(—t)). Analyzing the strongly continuous group
C(t), we may derive the following identities:

I
C(0) =0
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. L0
C(t) = — | Cy).
0 £
C(t) is a solution to the initial value problem T + T = 0, subject to the initial conditions

0 %
T(0) = I and T(0) = 0 in the Banach space €. The unique mild solution to this differential
equation is given by
cos ((£¥)1/2t) 0

C(t) = i
0 cos ((£¥)1/%t)

where cos ((£¥)1/2t) is the bounded operator defined by the Borel function calculus. A similar

analysis of S(t) yields?

0 (L%) ™ sin (1(£¥F)1/2)

S(t) =
v (L)% sin (t(L*)1/2) 0

The solution follows by addition. O

Remark 6.3.9. This solution is analogous to the d’Alembert solution to the wave equation in one

dimension.

6.3.2 Long term behavior of wave propagation

Theorem 6.3.10. Let (x¢, ;)" be a wave propagation with initial point (x0,%0)". The time-average

position of x is zero. That is,
1 T
lim — x; dt=0.
Tooo T 0

Proof. Using Theorem 6.3.8, write the cochain
xi = cos (t(L¥)/2)xo + (£%) 7 sin ((L¥)/?)xq .

We analyze these two terms in the sum separately.
The cosine term. Let ®O(t) := (ﬁk)_]/2 sin (t(flk)vz). The function f(t,x) = sin(tx)/x, appro-
priately extended to a total function on R?, is a bounded Borel function for each t and % is a

sin(tx)
x

2 The operator (£*) 2 sin (t(£*)1/2) is the operator obtained by applying the bounded Borel function f(x) =
to the operator (£*)1/2; the notation is not intended to imply that (£*)1/2 is invertible.
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bounded Borel function for all t. The Borel function calculus therefore allows us to differentiate
®(t) = f(t, (£L¥)"/?) and obtain

Lom = Te,zn')

dt
= cos(t(£*)1/2).

The integral of the cosine term can now be evaluated as

1 (7 (L¥) "% sin (T(Z¥)1/2)xo
! |

cos (t(L*)/?)xo dt =
0 T

Since x¢ € ker(L*)?, the spectral measure form of the spectral theorem guarantees

sin(T?x))2
= d A).
L\ea((zk)vZ) < TA Hxo ()

Let m > 0 be a small real number. On the interval (0, m), the integral may be bounded above by
lx, ((0,m)) as the integrand is bounded above by 1. On the interval (m, ), the integral may be

bounded above by % as the integrand is bounded above by ﬁ Combining these bounds

(Z:k)fl/z sin (T(Z?k)]/z)xo 2
T

yields
~ - 2
(£%) 2 sin (T(L%)"2)xq

T

[xol*
szZ'

< on((or m)) +
X

The upper bound converges to i, ((0,m)) as T — oo. Since m may be chosen arbitrarily small,

this quantity goes to zero. It follows that the cosine term satisfies
1 (7 -
lim — [ cos (T(Z¥)"?)xq dt = 0.
T— 0

The sine term. A similar analysis to the cosine term gives the following identity:

LT(Ek)—Uz sin(t(Ek)”z)%xo dt - (ﬁk)I(I_Coi(T(Zk)l/z)b-(o‘

Again using the spectral theorem, since X is orthogonal to the kernel of £¥, this term goes to

zero as T — oo,
Conclusion. Combining these results, when xy L ker(L¥), the time-average position X =

. T
limT_, % So xt dt converges to zero. ]
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This argument may be adapted to give a procedure for finding harmonic cochains in C*(%®; ).
Consider the space 3* := Dom ((£¥)"/2) @ ker(£*)*, which strictly contains the energy space
&¥. The energy inner product (—, —)¢ defines a semi-inner product on H¥; there are non-zero
points x € H¥ such that {x,x) = 0. Moreover, one may extend WK to Kk by

Wk = 0 I.
—L£k 0

This operator is still well-defined as R(L*) < ker(L¥)*. For any (xo,%o)" € 3¥, writing xo =
yo + ko where yo € ker((£¥)"/?)+ and ko € ker((£*)!/2), one may compute that

wk [0 =wk (YO
X0 Xo

This allows us to extend the wave propagation dynamics from €* to ¥, yielding

(- ()

Corollary 6.3.11. Let (xt,%¢)" be a wave propagation on H* with initial point (xo,0)". The time-average

position
-

X = lim = x¢ dt
T T 0 t

is the nearest k-harmonic cochain to xo.

Proof. Write xo = yo + ko where yo € ker((£*)1/2)1 and ko € ker((£¥)"/?). Since (£*)!/2 and £
have the same kernel, kj is the nearest harmonic cochain in Ck(ﬂ’; F). The wave dynamics on Fk
decompose as

1 T 1 T
- t=ko+— | yedt
TJ;)Xtd 0 TJO vd

Taking limits and applying Theorem 6.3.10 yields the desired result. O

Remark 6.3.12. This corollary essentially allows the use of wave propagation for distributed com-
putation of a harmonic cochain. If each k-cell represents an agent, the dynamics can be computed
locally at each k-cell utilizing only the information from neighboring k-cells. By continuously
evolving local data via wave propagation and recording the signal, taking an average stalk-wise

yields a harmonic cochain.
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7

NONLINEAR DYNAMICS

In Chapter 6, we observed that the sheaf Laplacian £* of a Hilbert sheaf ¥ : P — Hilbg
defines a heat equation x = —L¥*x on the space of k-cochains C¥(®P; ). Crucially, this is a first
order linear differential equation which can be solved via semigroup theory. In this chapter, we
explore two distinct nonlinear analogues to this heat flow. We restrict our attention to the case of
network Hilbert sheaves for simplicity, though many results can be adapted for the k-Laplacian
Lk CK(P;F) — CK(P;F) of an arbitrary Hilbert sheaf. Both approaches to nonlinear heat flow

come from the following observation.

Proposition 7.0.1. Let F : § — Hilby be a bounded network Hilbert sheaf with Laplacian L = §*9.
Every heat flow x; on the space of zero-cochains C°(G; ) is a gradient descent trajectory of the quadratic
potential function

1
V() i= 51612,

In particular, VV = £. This suggests an identification of linear heat dynamics on a Hilbert
sheaf with gradient descent with respect to a quadratic distance function g(—) = | — ||>. We may
adapt this framework in two different ways.

= || — |* with a different function for

1. First, we may consider replacing the quadratic g(—)
measuring "distance" in C'(G; F). Changing the distance function g will result in different,
nonlinear sheaf Laplacian £9 : Co(G;F) — CO°(G;F), with different dynamics. This ap-
proach, which we call a one-cochain nonlinearity, was first explored for weighted cellular

sheaves in [55, Section 10], and expanded in [52].

2. Second, we may take a truly "dynamics first" approach by replacing the coboundary opera-
tor & with a nonlinear map. Such a nonlinear coboundary map may be obtained by allowing
restriction maps to themselves be nonlinear. We call this approach a zero-cochain nonlin-

earity, as the coboundary map itself is nonlinear on C°(G; F).

The first approach, explored in Section 7.1, generalizes the quadratic potential to incorporate
edge-wise nonlinearities. While this framework has been studied in the finite-dimensional setting,
we briefly review the construction and note the additional care required when extending to
infinite-dimensional Hilbert sheaves, particularly regarding compactness assumptions for LaSalle

invariance arguments.
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The remainder of the chapter focuses on the second approach, which forms the primary con-
tribution of this chapter. Section 7.2 develops the general theory of C°-nonlinear Hilbert sheaves,
where restriction maps need not be linear. The challenge here lies in defining an appropriate
notion of sheaf Laplacian when the coboundary operator 5 loses linearity. We address this by em-
ploying various generalized gradients (Fréchet, Clarke, and convex subdifferential) depending
on the regularity of the potential function Vy(x) = %”5XH2. The section concludes by extending
the framework to Riemannian network sheaves, where stalks are smooth Riemannian manifolds
rather than Hilbert spaces.

Section 7.3 and Section 7.4 examine two special cases of C°-nonlinear Hilbert sheaves that
admit tractable analysis. Section 7.3 studies affine network sheaves, where restriction maps take
the form F¢(x) = A¢x + bs. We demonstrate that heat flows on such sheaves converge to ordinary
least squares solutions of potentially inconsistent inhomogeneous linear systems. Moreover, we
establish a cohomological interpretation through the language of torsors, following the work of
[46]. Specifically, we show that the cohomology of the linear structure sheaf with restrictions maps
F¢(x) = A encodes obstructions to the existence of global sections for affine Hilbert sheaves with
restriction maps F¢(x) = A¢x + by.

Section 7.4 investigates continuous piecewise affine (CPWA) Hilbert sheaves, where restriction
are continuous piecewise affine maps. Maps of this class arise naturally in applications to neural
networks with ReLU activation functions. The analysis requires tools from non-smooth analysis
as the resulting dynamics constitute state-dependent switched affine systems. We establish global
existence of Filippov solutions and prove that fast heat flows—those that minimize time spent in
sliding modes—are bounded and converge to generalized critical points of the potential function.
The polyhedral structure underlying CPWA maps provides sufficient geometric control to ensure
well-behaved long-term dynamics despite the lack of smoothness.

Throughout, we maintain focus on the interplay between the algebraic structure of sheaves and
the analytic properties of their associated dynamical systems, demonstrating how nonlinearity
in restriction maps enriches both the theoretical framework and potential applications of cellular
sheaf theory.

7.1 ONE-COCHAIN NONLINEARITIES

Let  : § — Hilbg be a network sheaf of Hilbert spaces on a finite graph § = (V,£), with
coboundary map 5. We briefly discuss nonlinear dynamics of the form x = 1 g(8x) for different
choices of g on bounded Hilbert sheaves. This approach to nonlinear sheaf Laplacians in the finite
dimensional setting is well-trod ground [52, 54]. We first recast the usual heat flow on space of

zero-cochains C°(§; ) as subgradient descent.
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7.1.1 Heat flow as subgradient descent

Definition 7.1.1. Let V : X — R be a partially-defined extended real-valued functional on a
Hilbert space X. V is proper if V has non-empty domain, is not uniformly infinite, and never
takes on the value of —co.

Let A : X — Y be a closed, densely defined operator with D := Dom(A). We may define a

potential function

T Ax|? ifxeD
V(x) :=

o0 else.

The potential function V is not continuous in general, and cannot be differentiated. However, V
is lower-semicontinuous, convex, and proper. These properties allow us to compute the subdif-
ferential of V as

oV(x):={ge X : V(y) = V(x)+{(g,y—x) YyeX}.

The subdifferential 0V (x) = {A*Ax} for all x € Dom(A*A) [15]. Moreover, when A is bounded
(and V is Fréchet differentiable), this subdifferential exactly agrees with the usual gradient of V.

Applying this analysis to the (potentially unbounded) coboundary operator 6 of the network
Hilbert sheaf ¥ : § — Hilby i yields the identification of the heat flow x = —Lx with (sub)gradient
descent with respect to the functional V(x) = %Héxﬂz.

7.1.2 Edgewise nonlinearities

In the previous analysis of the potential function V(x) = %HZ‘)XHZ, the potential function decom-

poses edgewise as
1
V() =5 2 (%) |2,

eeé
where € is the set of edges of the network §. The analysis via subgradients may easily be repeated
for unbounded network Hilbert sheaves when the distance function | — |? is replaced with a
different convex function g on each edge, such as the p-norm | — |[P for any choice of p > 1.

However, to consider non-convex g, it is useful to restrict attention to bounded Hilbert sheaves.

Definition 7.1.2. Let J : § — Hilby be a bounded network Hilbert sheaf on a graph § = (V, €).
A C'-nonlinearity is a family of globally defined maps {¢. : F(e) — R|e € £}. The data of a
C'-nonlinearity induces a block map ® : C'(3;F) — R by

D(y) == Z beye-

ect
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We affectionately call the map @ the middle map of the C'-nonlinearity due to its role in defining
the C'-nonlinear Laplacian.

Definition 7.1.3. Let ¥ : § — Hilby be a bounded network Hilbert sheaf on a graph § = (V, )
with C'-nonlinearity {¢c}ece. The potential function associated to the C'-nonlinearity is the
map V® : C%(G;F) — R defined by

VO (x) = %(D(éx) = % Z de((8x)e) .

eeé

When ® is continuously differentiable in a neighborhood of a point §x € C'(G; F), the potential
function V? is differentiable at x, and has gradient
[} | *
VV® = 26 (VO)s.
Definition 7.1.4. Let F : § — Hilbg ; be a network Hilbert sheaf on a graph § = (V, €) with C'-
nonlinearity {¢¢}ece. The C'-nonlinear Laplacian is the map £% : C°(G;F) — C°(G;F) defined
by
1

L= Ezv“(vcb)zs.

The C'-nonlinear Laplacian £® induces a smooth dynamical system on C°(5; J), wherever the
composition ®d(x) is differentiable. The resulting dynamical system

x = —LPx (6)
is called the C'-nonlinear heat flow with respect to the C'-nonlinearity ®. The Picard-Lindelof

theorem ensures the local existence of C'-nonlinear heat flows for all initial values xo € Dom(£®).

Remark 7.1.5. In [55, Section 7.3], these C'-nonlinear dynamics are explored for finite dimen-
sional weighted cellular sheaves. Many of the results can be straightforwardly adapted for the
infinite dimensional setting. However, care must be taken with arguments based on LaSalle in-

variance, which require additional assumptions or argumentation to ensure precompactness.

7.2 ZERO-COCHAIN NONLINEARITIES

Our second approach to defining a nonlinear sheaf Laplacian is to directly adapt the definition
of a network Hilbert sheaf to allow for nonlinear restriction maps.

Definition 7.2.1. Let § = (V,€) be a finite graph, viewed as a weakly-regular cell structure. A
C®-nonlinear Hilbert sheaf J on § consists of the following data.
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e For each o € V11 ¢, the choice of a Hilbert space stalk F(o).

e For each covering morphism f : v — e in G, a restriction map F¢ : F(v) — F(e) with domain
Dom((f).

From these data, we define the spaces of zero-cochains C°(G;F) and one-cochains C'(S;F) as
before; namely by the direct sum of stalks over vertices and edges respectively. We also define a
coboundary map & : C°(G;F) — C'(S; F) with respect to a choice of an orientation of each edge
by

(Sx)e =Tgxy — Texy,

where f and g are the covering maps corresponding to the source and target of the edge e. We
further require that & be closable, meaning that the closure of the graph I'(§) < C°(G;J) x
C! (G;F) is the graph of a function, which we denote by & : CO(S;S") — C! (G;F). In an abuse of
notation, we also call the closure 6 the coboundary map.

Remark 7.2.2. Like Hilbert sheaves with unbounded linear operators, the restriction map I+ :
F(v) — F(e) is not required to be globally defined nor continuous.

Consider the potential function Vg (x) = %H&x”z on C°(G;F). When V admits a generalized

gradient 0V (x) for all x e Dom(5), we may define a C°-nonlinear sheaf Laplacian
L= dVg(x)
and a corresponding heat flow
x € —Lx. ()

Remark 7.2.3. A general CO-nonlinear Hilbert sheaf will not admit a sheaf Laplacian. Moreover,
different C°-nonlinear Hilbert sheaves will require the use of a different generalized gradient. A
few examples will be illustrative.

Example 7.2.4. Let  be a C%-nonlinear Hilbert sheaf on G such that all restriction maps are con-
tinuously Fréchet differentiable on an open domain of definition. Call such a sheaf continuously
differentiable. The potential function V(x) is continuously Fréchet differentiable as well, and
we may take the usual gradient V as our generalized gradient. The corresponding sheaf Lapla-
cian is given by £x := V1 ||6x|?, and the corresponding heat flow is gradient descent with respect
to V.

Example 7.2.5. As a special case of the previous example, a bounded network Hilbert sheaf
F : § — Hilby, can be viewed as a continuously differentiable C°-nonlinear Hilbert sheaf. In this

case, the heat flow reduces to the usual sheaf Laplacian £x = —5*0x.
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Example 7.2.6. Suppose J is a CO-nonlinear Hilbert sheaf such that the potential function Vi (x)

is proper, convex, and lower semicontinuous. The convex subdifferential
oV (x) = {ge C%(G;F) : Va(y) = Va(x) +{g,y—x) Vye C%S;9F)

allows us to define the sheaf Laplacian £x := 0V5(x). The Brézis-Komura theorem will guarantee
a unique heat flow.

Example 7.2.7. As a special case of the previous example, the potential function Vg associated to
an unbounded network Hilbert sheaf J : § — Hilb i is proper, convex, and lower semicontinu-
ous. Moreover, the convex subdifferential 0V recovers the usual sheaf Laplacian £ = 5*5.

Example 7.2.8. Suppose J is a C-nonlinear Hilbert sheaf such that the potential function V(x)
is locally Lipschitz on an open domain, but not necessarily convex. In this case, we may use the
Clarke generalized gradient [24, Definition 1.1]:

OVy(x) = CVX{ lin%O VVs(x+hp) @ hy — O} ,
n—

where cvx S denotes the convex hull of points in S. This approach again recovers the usual sheaf
Laplacian when applied to a bounded network Hilbert sheaf.

7.2.1  Local adjoints

In addition to recovering the usual sheaf Laplacian for network Hilbert sheaves, there is a geo-
metric justification for the Laplacian £ := 0V to be viewed as a nonlinear generalization of the
ordinary sheaf Laplacian. In the forthcoming analysis, we assume that our coboundary operator
d is locally Lipschitz continuous, and hence almost everywhere differentiable on a dense G; set.

Let X and Y be Hilbert spaces. A continuous function f : X — Y has a linear adjoint f*: Y — X
such that {fx,y)y = (x, f*y)x for all x € X and y € Y if and only if f is a bounded linear function.
Consequently, to define a sheaf Laplacian £ = 6*5, the coboundary map & must be linear. In this
section we seek to define a variant of the adjoint for nonlinear maps that allow a second approach
to nonlinear Laplacian dynamics on Hilbert spaces.

Definition 7.2.9. Let X, Y be Hilbert spaces, and let f : D — Y be a continuous map defined on
an open subset D < X. A local linear adjoint (or simply a local adjoint) for f on D is a map
f*: D x Y — X such that the following conditions hold.

(i) f%:=f*(x,—):Y — Xis a bounded linear map for each x € D.

(ii) Forallxe Dandy €,

(F(x+h) = (), y)y =, F(y)x| = o([hx).
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Proposition 7.2.10. A map f: D — Y admits at most one local adjoint.

Proof. We may repeat the argument for the uniqueness of the Fréchet derivative. Fix an x € D
and y € Y. For any h € X, we may compute:

[ oy — gawl < [Ch, FXy) = <KF(x + h) = £(x), y)l + [Khy giy) — (F(x + h) — (%), y)l
= o(|[h]).

Let v := ffy — g}y, and suppose that v # 0. Then KLQVN = |lv|? is not o(|e|) as € — 0, so
v=0. O

This proof suggests an interpretation of the local adjoint. For small deviations away from x, we
have a near equality (f(x + h) — f(x),y) ~ {h,f%(y)). Moreover, f% is the best approximation, as
it is the only o(||h||) approximation.

Example 7.2.11. Suppose A : X — Y is a bounded linear map. Then A has a local adjoint A* on
all of Y, which is given by the usual linear adjoint.

Example 7.2.12. Suppose f : X — Y is a continuous affine map, given by f(x) = Ax + b, where
A : X — Y is a bounded linear operator, and b € Y is a fixed vector. Then f has a local adjoint f*
all of Y, which is again given by the linear adjoint A*.

Both of the previous examples may be viewed as special cases of the following proposition.

Proposition 7.2.13. Suppose f : X — Y is Fréchet differentiable on D. Then f has a unique local adjoint
f* on all of V given by f = (Dxf)*.

Proof. We simply check by the Cauchy-Schwartz inequality that
[FOe+ 1) = £00),y) = Chy (Dxf) Yol < [0+ 1) = £(x) = Dxf(W)[[y[ = o[-

O]

This proposition justifies that the C%-nonlinear sheaf Laplacian of a C°-nonlinear Hilbert sheaf
is a natural generalization of a Hilbert sheaf. At each point x € C°(G; F) where & is differentiable,
the generalized gradient 0V (x) will agree with the usual gradient

VVg(x) = 5;6x.

When 6 is locally Lipschitz, and hence differentiable on a dense Gs-set (and almost everywhere
differentiable with respect to Lebesgue measure when C°(S; ) is finite dimensional), the dynam-
ics of x = —Lx look like the linear case locally.
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Remark 7.2.14. The converse to Proposition 7.2.13 is not true. In particular, the limit convergence
required for the existence of a local adjoint is best thought of as occurring in the weak topol-
ogy, while the convergence required for differentiation is in the strong topology. Example 7.2.15
provides a schema for functions which admit a local adjoints but are not differentiable. Conse-
quently, one could define a different notion of a nonlinear Laplacian via £x := 8} x, whenever 8
admits a local adjoint. However, this definition would be too restrictive, as it could not cover the
unbounded linear case, and convergence results would be given in the weak topology.

Example 7.2.15. Let X = Y = ¢2(IN), and let w : X\{0} — Y be a continuous function with the
following properties.

1. w(x) is a unit vector for all x € X\{0}.

2. For all n € N, there is an € = e(n) > 0 such that w(x) is supported on basis elements
{ej : j > n} whenever [x|| < e.

Now consider the continuous function f : X — Y given by

Fx) = [[x[lw(x) ifx#0

0 else.

Atx = 0, f has a local adjoint given by 0. However, f is not Fréchet differentiable (or even Gateaux
differentiable) at 0.

7.2.2  Generalities on nonlinear heat flow

A generic C°-nonlinear Hilbert sheaf—even when admitting a Laplacian—does not have enough
structure to meaningfully study dynamics, such as proving global existence of solutions to the
heat flow or finding long-time asymptotic behavior. This difficulty is compounded by the ambi-
guity of the nonspecific choice of a generalized gradient. We now discuss the potential function

Vg for different choices of generalized gradients.

Notation 7.2.16. Let o€, 0*, and V denote the Clarke gradient, convex subdifferential, and classi-
cal gradient respectively. Meanwhile, let 0 denote a nonspecific (generalized) gradient. In future
sections, these superscripts will be omitted when the choice of generalized gradient is clear from

context.

Let F be a C%nonlinear Hilbert sheaf with Laplacian £ = dVg. A point x is a generalized
critical point of V5 if 0 € 0Vy(x). A generalized critical point x has zero energy (Vy(x) = 0) if
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and only if x is a global section of J (6x = 0). We say that a generalized critical point x is a
generalized saddle point if x is not a local minimum nor maximum of V.

For the purpose of "consensus seeking", we will be interested in when a heat flow x; converges
to a global section. It is straightforward to construct examples—even smooth ones—where a Cyp-
nonlinear heat flow x; does not converge to a global section. Indeed, global sections need not
exist.

7.2.2.1 Smooth gradients

Let J be a C°-nonlinear network sheaf with smooth restriction maps. The associated potential
function Vg : CO(S ;F) — R will be a smooth function as well; the natural choice of generalized
gradient is the usual Fréchet gradient V. Call such a network sheaf, equipped with the choice of
V for the generalized gradient, a smooth CO-nonlinear network sheaf. The Picard-Lindelof theo-
rem immediately ensures local existence of heat flows x; on C°(S; F) which satisfy Equation (7).

Proposition 7.2.17. Let F be a smooth C°-nonlinear network sheaf. For every initial value xo, there is a
heat flow x: satisfying Equation (7).

Remark 7.2.18. This local existence will hold more generally if each restriction map is twice
continuously Fréchet differentiable. Under this condition, 3, and hence Vg, will both be twice
continuously differentiable, and the gradient VVy will itself be locally Lipschitz.

As the solution to a gradient descent, each heat flow x; comes equipped with a Lyapunov
function. In particular, since & Viy(x¢) = —|VVs(x¢)| < 0, the potential function Vi is itself
a Lyapunov function for x;. The asymptotic behavior of heat flow can thus be understood by
LaSalle invariance [51]; in particular, every precompact heat flow x; converges to a generalized
critical point of V.

Remark 7.2.19. When either C°(G; F) or C'(G; ) are finite dimensional, all bounded trajectories
are precompact. This finite-dimensionality condition will hold exactly when all vertex stalks or
all edge stalks of J are finite dimensional.

We now turn to understanding these generalized critical points. The C%-nonlinear Laplacian
£ may be computed as £x = VVg(x) = (Dx8)*8x. A cochain x such that 5x € ker ((Dxd)*), but
dx # 0 exactly corresponds to a generalized critical point which is not a global section. The
derivative Dx[L is, in turn, given by

Dx£(h) = (Dx8)*(Dx8)(R) + (Dgb(h, ) *8(x) -

At a global section x, Dx£(h) simplifies to the first component DyL(h) = (Dx0)*(Dxd)(h). There-
fore the derivative DL : C°(G; F) — CO(S;CT") is a positive operator at each global section, and
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has a non-negative spectrum. In general, this spectrum will fail to be strictly positive; the global
section will be point in a consensus manifold of points where V5 = 0. If 0 is isolated in the spec-
trum o(Dx£L) at a global section x, one may apply the center manifold theorem [104, Theorem

7.1] to study local asymptotic stability of flows.

7.2.2.2  Convex subdifferentials

Let F be a C°-nonlinear network sheaf such that the associated potential function Vs is lower-
semicontinuous and convex. For such a potential function, the convex subdifferential is a suitable
choice of generalized gradient. For the potential function Vg to be convex is an extremely strong

condition, and the corresponding dynamics are straightforward to analyze.

Proposition 7.2.20. If Vi is convex, the heat flow x € 0*Vy(x) has a unique global strong solution for
all initial values xo € Dom(d), and a unique global mild solution for all xo, € Dom(0). Moreover, Xt

converges to a global minimum of V in the weak topology as t — oo.

Proof. 1f Vg(x) = %Hé(x) |2 is convex, then since & has closed graph, Vs is a proper, convex, lower
semicontinuous functional. The Brézis-Komura theorem [74] guarantees a unique heat flow that
obeys the dynamics x € —Lx = —0*Vg(x) for all initial values xo € Dom(3), as a mild solution.
The solution is classical when xp € Dom(3). By Opial’s lemma [97, Theorem 6.3], there are no
critical points which are not global minima of Vg, and a heat flow x; will weakly converge to

such a global minimum x.. O

Remark 7.2.21. Under additional assumptions such as Vg being even [16] or strong convexity
[97], x¢ will converge strongly to a global minimum. This also constitutes an alternative proof of
the existence and convergence of heat flows for linear Hilbert sheaves.

7.2.2.3 Clarke gradients

When the potential function Vg is a globally defined locally Lipschitz continuous, the Clarke
gradient 9€ is an appropriate choice for a generalized gradient. Indeed, for a locally Lipschitz
potential function V on a generic Banach space X, the Clarke gradient 0“V(x) is non-empty
for all x € X [70]. However, care must be taken with the solution concept for the heat flow
x € —0“Vg(x), as the right hand side is both multivalued and discontinuous. We will primarily
consider Filippov solutions [39]. For a friendly introduction to non-smooth and discontinuous
differential equations, see the following paper of Cortés [32]. On a Hilbert space X, let FinSub(X)
denote the collection of all finite dimensional linear subspaces of X, and let uy denote Lebesgue

measure on U € FinSub(X).
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Definition 7.2.22. Let X be a Hilbert space, and let f : X — X be a locally Lipschitz function. The
Filippov set-valued map F[f](x) is defined by

FIfl) =] () [ ovx{f((x+V) nBe(x)\(x+9))},
€>0 UeFinSub(X) ScU
nu(S)=0
for each x € X, where B¢ (x) is the open ball of radius € centered at x. When X is finite dimensional,

this definition reduces to

FIflx) = () () evx{f(Be(x)\S)}.
e>0 ScX
n(S)=0
A Filippov solution to the differential inclusion x € F[f](x) is an absolutely continuous curve x(t)
for t € [0, T] such that x(t) € F[f](x(t)) for almost every t € [0, T].

Remark 7.2.23. We make a few remarks about Filippov solutions.

1. The complication in the infinite dimensional definition comes from the fact that there is no
canonical nullset structure on an infinite dimensional Hilbert space; we make the standard

choice of using the canonical nullsets of all finite dimensional slices via Lebesgue measure.

2. When f : X — X is the (densely-defined) gradient of a locally Lipschitz potential function
V : X — R, the Filippov function F[f](x) is exactly the Clarke generalized gradient 0 V/(x).

3. Finally, the multivalued nature of the Filippov function makes the uniqueness of Filippov
solutions more subtle than existence.

Proposition 7.2.24. Let F be a CO-nonlinear Hilbert sheaf on a network . If & is locally Lipschitz and
defined on an open set, the heat flow x € —0< Vg (x) has a local Filippov solution around all xy € Dom(§).

Proof. Since b is locally Lipschitz, then Vg (x) = %Hé(X)HZ is locally Lipschitz as well. It follows

that the negative Clarke gradient —0¢V/(x) is upper semicontinuous [24]. Locally existence of a
Filippov solution with initial point xo € Dom(3) up to the boundary of a closed ball of positive
radius inside C°(G; F) immediately follows [39, Theorem 7.2]. O

Remark 7.2.25. Under a variety of additional hypotheses, such as bounded sublevel sets of Vy,
local existence of Filippov solutions may be strengthened to global existence.

The potential function Vg acts as a global Lyapunov function for the heat flow x;, granting

access to a variety of tools for analysis. See [32] for an overview.
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7.2.3 Riemannian consensus

The structure of C°-nonlinear Hilbert sheaves can be generalized beyond Hilbg ;-valued vertex
and edge stalks. When defining the C%-heat flow via smooth gradient descent, we implicitly
identify each vertex stalk with its tangent space at each point. By making this identification

explicit, one may work with Riemannian manifolds for stalks.

Definition 7.2.26. Let § = (V, €) be a finite network. A Riemannian network sheaf consists of

the following data.

e For each vertex v € V, a smooth Riemannian manifold F(v) := M,, with metric g,.

* For each edge e € &, a smooth geodesically complete Riemannian manifold F(e) := M,

with metric ge.

* For each covering morphism f : v — e, a smooth map J¢: M, - Me.

From the data of a Riemannian network sheaf F, one may construct a coboundary operator
as follows. Let C°(G;F) := [[,ep My and C'(G;F) := [[.ce Me denote the product manifolds of
vertex and edge stalks equipped with their product metrics. We abbreviate these spaces to C°
and C' for notational clarity. One may define the coboundary map & : C° — C' x C! as follows.
Letting (8x)e € M x M, denote the image of b in the pair of components corresponding to the
edge e in C' x C!, we define 5 by

(5x)e := (Fs(e)Xs(e) Fe(e)Xe(e)) »

where s(e) and t(e) denote the source and target of the oriented edge e, and F(¢), Iy (e) denote
the corresponding covering morphisms in G.

Remark 7.2.27. Since the edge stalks have no intrinsic notion of subtraction, we record both

components separately.

Let 71; and 7, denote the projections onto the first and second component of C' x C'. The
coboundary operator defines a potential function

1
Vy(x) == Edé (711 8, 7126x)

1
= 3 22 42 (FsteyXster Fr(e)Xece))-

ect

Definition 7.2.28. Let F be a Riemannian network sheaf. A zero-cochain x € C°(G; ) is a global
section of J if the potential function Vs(x) = 0. That is, a global section is exactly a choice of

point x, in each vertex-manifold M,, such that for each edge e, Fs(e)Xs(e) = Fiy(e)Xt(e)-
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Remark 7.2.29. A global section encodes a solution to a consensus problem. Borrowing the lan-
guage of opinion dynamics a la [55], one may envision each vertex manifold M, as a space of
parameters for some agent, which are then expressed through the restriction maps out of M,,.
A global section x € C°(G;F) exactly corresponds to a choice of parameter for each agent that
satisfy expressed consensus in each edge manifold M.. Such a problem of finding agreement in a
networked collection of points in a manifold is known as the Riemannian consensus problem
[22, 76, 119, 120]. Distributed algorithms for solving the Riemannian consensus problem has been
extensively studied for the constant network sheaf, where there is a fixed manifold M such that
Mg = M for all 0 € VU €, and all restriction maps are the identity.

Remark 7.2.30. Not every Riemannian network sheaf will admit a global section; indeed, it is
possible for two for two restriction maps into the same edge to share no points in their image.

Example 7.2.31. We turn to an example from information geometry [5]. For real parameters
nw e R and o > 0, let N(p, 0) denote the normal distribution with mean p and standard de-
viation 0. Let N7 := {N(in,0) : (n,0) € R x R5¢} denote the collection of all univariate nor-
mal distributions. We endow Nj with the structure of a Riemannian manifold as follows. For a
choice of parameters (u, o) let p(x; 1, 0) denote the corresponding Gaussian density function and
{(x; 1, 0) := logp(x; 1, 0) its logarithm. The Fisher information metric on N7 may be computed

E[0u0ut] E[0ulost]| |& O
E[0500,] E[05L04(] 0 3

The Fisher information metric endows N7 with the structure of a two-dimensional Riemannian
manifold.
Let § = (V,€) be a finite network, and consider the constant Riemannian Hilbert sheaf N7

consisting of the following data.

¢ A manifold stalk My := N7, equipped with the Fisher information metric, for each o €
Vué.

¢ The identity map J¢ := id : Ny — N for each covering map f:v — e.

A global section of this Riemannian network sheaf exactly corresponds to an identical choice of

a normal distribution N(u, o) € M,, for each vertex.

Recall that when f : M — R is a smooth function on a Riemannian manifold (M, g), one may
define the gradient of f at x € M as the unique tangent vector Vyf(x) € TyM such that for all
v € TxM and smooth curves vy : [0,1] — M with y(0) = x and y(0) = v, there is an equality:

d

9x (Vcf(x),v) = A (v (1) o
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When the manifold M is geodesically complete, there is a globally defined distance function
d: MxM — R for which d(x,y) measures the length of the shortest geodesic connecting
x and y. On the product manifold M x M equipped with the product metric g @® g one may
define a function c(x,y) := %dz (x,y). For every pair x,y that are connected by a unique length-
minimizing geodesic, the function c has a gradient given by

Vixyc(xy) = (—Log,y,—Log,x) e kM@ TyM

where Log,, q is the Riemannian logarithm; for p # q in M, Log,, q := Ypq(0)d(p, q) where vpq
is the unique minimal unit-speed geodesic joining p to q. We adopt the convention that when
P = q, the Riemannian logarithm Log]D q= Log]D p = 0. When y is in the cut-locus of x, there
may be multiple distinct length-minimizing geodesics connecting x and y. For such a pair, c(x,y)
fails to have a well-defined gradient, but admits a Clarke generalized gradient

6&/y)c(x,y) = cvx{(—Log)y, — Log;’ x) @ v is a length-minimizing geodesic x ~» y}
where Log” denotes the Riemannian logarithm with respect to a choice of length-minimizing
geodesic.

When x;(¢) and x () are sufficiently close together for each edge e € &, the potential function
V5 has a well-defined gradient at x given on each vertex v e V by

(VXVSF(X))V = Z (Dx\,:‘rs(e))>i< <_ Logﬁrs(e)xv (gjt(e)xt(e)))

ecé
s(e)=v

+ Z (va:}'t(e))* (_ Logfﬂ(e)xv (:}'s(e)xs(e))> :

eeé
t(e)=v
The gradient V4V(x) defines a vector field on C° on the set of zero-cochains x € C° such

that there is a unique length-minimizing geodesic between JF(¢)X;(e) and Fye)xy(e) for all edges
eec.

Definition 7.2.32. A Hadamard manifold is a Riemannian manifold (M, g) that is complete,

simply connected, and has non-positive sectional curvature at every point.

Remark 7.2.33. Every Hadamard manifold is a finite dimensional Hadamard space—a nonlinear
generalization of a Hilbert space. Specifically, every Hadamard space is complete metric space,
such that for every pair of points x,y, there is a point m, called the midpoint of x and y, such

that for all z:
d(x,y)2 - d(z,x)2 + d(z,y)2

d(z, m)? + 4 S >
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Every Hilbert space with its norm-induced distance function is a Hadamard space with midpoint
given by m = X34,

Proposition 7.2.34. Let F be a Riemannian network manifold on a network G = (V,€). If M is a
Hadamard manifold for all e € €, then the gradient vector field VxV(x) is globally defined.

Proof. In a Hadamard manifold M, every pair of points x,y € M is joined by a unique length-
minimizing geodesic. It follows that the cut-locus of every point x € M is empty. The the finite
product of Hadamard manifolds, equipped with the product metric, is a Hadamard manifold.
Therefore the space of one-cochains C! is a Hadamard manifold, and the gradient VyVs(x) is
well-defined for all x € C°. O

When every edge manifold is a Hadamard space, one may consider the gradient descent on
Co

x = —VxVz(x), (8)

for any choice of initial cochain x¢y € CO. Under suitable conditions on the vertex manifolds M,
and the restriction maps J¢ : M, — M, every initial cochain has a globally defined gradient
flow x¢ : R>o — C° which converges to a global section.

Theorem 7.2.35. Let I be a Riemannian network sheaf on a network G which satisfies the following
conditions.

(i) Every vertex and edge manifold M is a Hadamard manifold.
(ii) The set of global sections T'(F) is non-empty.
(iii) Every restriction map is a totally-geodesic isometry.

For every zero-cochain xo € C°, there is a globally defined negative gradient flow x satisfying Equation (8),
initialized at xo, which converges to a global section.

Proof. The potential function Vg is a continuous function on C°. We now check that Vi is
geodesically convex. Let y(t) be a geodesic in C°, with 0 < t < 1. Each component v, (t) is
a geodesic in M,,. Since all restriction maps are geodesically complete, for each edge e, the paths
Ns(e)(t) = Fse)(Ys(e) (1)) and ny(e)(t) := Fy(e)(Ye(e)(t)) are geodesics in M. The metric of a
Hadamard space is jointly convex along geodesics [9, Section 1.2], giving the inequality

de (Ms(e) (1), Me(e) (1) < (1= t)de (Ms(e) (0),Me(e)(0)) + tde (Ms(e) (1), Mecey(1))
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for all t € [0, 1], where d. is the distance function on M,. It follows that the map

1 2
t— Ede (T]s(e) (t)/nt(e) (t))

is convex in t. Summing over all edges e € € yields that Vs is geodesically convex.

Since Vg is a continuous and geodesically convex function on a Hadamard manifold C°, V
has globally defined negative gradient flows x; satisfying Equation (8). Moreover, since Vs has
a global sections (and thus obtains its minimum), this gradient descent converges to a global

section as t — o [9, Theorem 5.1.16]. O

Remark 7.2.36. Many of these conditions can be weakened in practice. Moreover, such results
can be extended, with care, to the infinite dimensional setting via Hadamard space theory.

Example 7.2.37. We return to Example 7.2.31. Recall that the constant Riemannian network sheaf
N7 on a network § has all vertex and vertex and edge stalks given by the univariate Gaussian
statistical manifold N7, equipped with the Fisher information metric. All restriction maps are
given by the identity function.

The univariate Gaussian statistical manifold N7 is isometric, up to a constant scaling factor,
to the two-dimensional hyperbolic plane [5]. The hyperbolic plane is a Hadamard manifold.
Therefore by Theorem 7.2.35, for any choice of an initial zero-cochain xo € C°, the negative
gradient flow x¢ of the potential function Vy, converges to a global section xo of N;.

7.3 AFFINE SHEAVES

As a straightforward example of a class of C°-nonlinear Hilbert sheaves, we may consider the
class of Hilbert sheaves with affine maps.

Definition 7.3.1. An affine network sheaf on a finite graph G = (V, €) is a C°-nonlinear network
Hilbert sheaf whose restriction maps are densely defined affine. That is, each restriction map
F¢: F(v) — F(e) can be written F¢(x) = A¢x + b, where A¢ is a densely defined linear operator,
and by € F(e).

Remark 7.3.2. As usual, the most difficult in part in confirming that an assignment of stalks and
restriction maps is an affine network sheaf is to check that the coboundary operator § is closable.
In this case, we observe that & is closable if and only if for every edge e with incoming covering

maps f, g, we have that [_ As A g] is closable.
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7.3.1  Affine dynamics

When 7 is an affine network sheaf, the potential function V5 can be seen to be convex by a
straightforward computation. By Proposition 7.2.20, we get heat flows for all initial xo € C°(S; F).
Under suitable conditions, we can meaningfully analyze this heat flow. Note that the coboundary
operator § : C°(G;F) — C'(G; ) is itself an affine map, and can be written as 5(x) := Asx + bs,
where Aj is a closed densely defined linear operator. Say that an affine Hilbert sheaf is proper if

the following conditions hold.
(i) bs € Dom(Aj).
(i) R(As) < Dom(Aj%).

When J is proper affine, the heat flow can be written as
X = —A?(Az—,x + b5)

for all initial conditions xo. We may also prove the following convergence result.

Proposition 7.3.3. Let J be a proper affine network sheaf with coboundary operator dx = Asx + bs. We
may characterize the asymptotic behavior of a heat flow x with initial value x¢ as follows.

(i) If bs € R(As), then x¢ converges to the nearest global section to xo. That is, Xo := lim¢_, Xy 1S the

nearest point to Xo such that Agx., = —bs.

(ii) If R(As) has closed range, then X, is the nearest OLS solution to the inconsistent linear system
A5X = —b5.

Proof. If bs € R(As), then we may write —bs = Ac for some ¢ € C°(G;J), and the space of
solutions {x : Asx+bs = 0} = c +ker(As). Letting y; := x¢ + ¢, we see that y, = —A}Asyy,
and evolves according to the Cp-semigroup y; = e A Asy,, and converges to Yoo = Pier A Yo,
where Py, A, is the orthogonal projection onto the kernel of As. It follows that x, = y — ¢ is
the orthogonal projection of xo onto the solution space ¢ + ker(As).

If R(As) has closed range, then As admits a bounded, globally defined Moore-Penrose pseu-
doinverse A; :CHG;F) — COG; F). Set x(5) = —A:rsbé. Note that AgAéAgbé = A¥bs, so x(8) is
a critical point for the heat dynamics. Thus, the flow x; can be written as x; := e S Asxy + x(8),
which converges to x¢ := Pyer A, X0 + x(8). This point may be easily identified with the nearest
OLS solution to Agx = —bj to the initial value xg. O

Remark 7.3.4. These dynamics are already quite useful from the standpoint of cellular sheaf
theory. One dynamics-centric perspective on network sheaves is that global sections encode so-
lutions to networked systems of homogeneous linear equations. Heat dynamics then provide a
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distributed approach to finding a solution to the networked system. When we replace the linear
restriction maps with affine maps, the C°-heat flow now encodes the best OLS solution to a (po-
tentially inconsistent) inhomogeneous system of equations. This approach to nonlinear dynamics

increases the expressive power of network sheaves.

7.3.2  Affine cohomology

While C°-nonlinear Hilbert sheaves are largely motivated from a "dynamics first" perspective,
affine network sheaves still admit a cohomological interpretation. Using the language of torsors,
we may understand the structure of affine sheaves and their global sections in terms of the coho-
mology of the underlying linear maps. This perspective and interpretation are in line with recent
work of Ghrist and Cooperband on network torsors, which they used to study visual paradoxes
[46]. The broader connection between torsors, sheaves, and cohomology are well established [47,
124]. For a gentle introduction to torsors, see John Baez’ expository piece [11].

For simplicity, we assume we are working with an affine network sheaf F with only finite
dimensional stalks, but this cohomology and interpretation can be extended to the bounded
infinite dimensional setting given suitable closed-range assumptions. Recall that an affine space
is a triple (A, W, u), where A is a set, W is a vector space, and pn: W x A — A is a free, transitive
action of the additive topological group of W on A. It immediately follows that the map pu(—,x) :

W — A is a bijection for each x € A.

Notation 7.3.5. For every x € A and w € W, we write the action w + x := u(w, x). For each pair

x,Yy € A, we denote the unique w € W such that w+x =y by y — x.

We think of the affine space A as a copy of W "without origin"—that is, as a torsor over a
one-point space with respect to the additive topological group (W, +), where one can measure
differences but not absolute location.

Let (Ao, Wo, o) and (A1, W7, 1) be affine spaces. A set map f: Ay — A; is an affine map if
there is a linear map L: Wy — W such that f(x +w) = f(x) + Lw for all x € Ay and w € Wj.

Remark 7.3.6. If the affine spaces (Aj, Wj, 1ij) are merely viewed as torsors with respect to the
additive group structure of a vector space, the class of affine maps is a strict subset of the the
class of morphisms of torsors. We require the map L : Wy — W; to be linear—not merely a group
homomorphism of the additive groups (Wy, +) and (W7, +). However, treating affine spaces as
torsors with respect to the topological group structure enforces linearity of all torsor morphisms.

We now apply the recent notion of inhomogeneous network torsors [46] to affine network

sheaves.
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Definition 7.3.7 (Affine network torsor). Let § = (V, €) be a finite network, and F : § — FinHilby,
be a finite dimensional weighted network sheaf. A finite dimensional affine network torsor over

G is a cellular sheaf of topological spaces A : § — Top such that the following conditions hold.

(i) Each stalk A(o) is equipped with a free transitive continuous group action p : F(o) x
A(o) — A(o) of the additive topological group of F(o). This gives each stalk the structure

of an affine space.

(ii) For each covering morphism f : v — e in G, the restriction map A : A(v) — A(e) is
compatible with the topological group actions in the sense that

Ar(w+x) = Fr(w) + A¢(x)

for all x € A(v) and w € F(v). That is, A¢ is equivariant up to the linear map F.

We call J the linear structure sheaf of the affine network torsor A. When we wish to specify
the underlying linear structure sheaf, we call A an F-affine network torsor.

Remark 7.3.8. A finite dimensional J-affine network torsor consists of essentially the same data
as an affine network sheaf (Definition 7.3.1) whose affine restriction maps have underlying linear
components given by J. However, the lack of objective origin in an affine network torsor means
that multiple affine network sheaves may have the same torsor structure.

Remark 7.3.9. Definition 7.3.7 may be viewed as a specialization of inhomogeneous network tor-
sors [46, Definition 6.1] to the additive groups of vector spaces, subject to the additional constraint

that all actions and maps are continuous.

Definition 7.3.10. Let A, A’ be finite dimensional affine network torsors over the same linear
structure sheaf ¥ : § — FinHilby. A morphism of F-affine network torsors from A to A’ is
a natural transformation ¢ : A = A’ whose component maps ¢ : A(0) — A’(0) are F(o)-

equivariant.

Remark 7.3.11. Since each stalk-map ¢ : A(0) — A’(0) must be F(o)-equivariant, the linear
portion ¢, must be the identity map, making ¢ a translation. That is, there is some w € J(0)
such that ¢5(—) = w+ (—). Since a translation is a bijection, all morphisms of F-affine network

torsors are isomorphisms.
We may recover a classification result for F-affine network torsors similar to [46, Theorem 6.2].

Theorem 7.3.12. Let § = (V, &) be a finite network, and F : § — FinHilby be a finite dimensional
weighted network sheaf. There is a canonical bijection

HY(G;F) «— {isomorphism classes of F-affine network torsors} .
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Proof. Let [y] € H'(G; ) be a cohomology class with representative y € C'(G; F). We may build
an J-affine network torsor AY : § — Top with the following data.

* Each stalk AY(0) is the topological space underlying the Hilbert space J(o).
¢ The group action on AY(0) is exactly addition on F(0).

¢ For a covering map f: v — e in §, the restriction map A is given by

y Fex if f has positive orientation
At(x) =

Fr(x) — ye if f has negative orientation,

where y. is the component of y living in AY(e) = F(e).

AY is easily seen to be an F-network torsor. Moreover, when y,y’ € [y] are representatives of the
same cohomology class of H' (G; F), there is an element b € C°(§; ) such that y’ —y = 5b, where
5 :C%G;F) — C'(G;F) is the linear coboundary map induced by F. From this b, we derive an
isomorphism of F-affine network torsors ¢ : AY = AY" with naturality squares

where f:v — e and g : u — e are assigned positive and negative orientations respectively.
Conversely, let A be an F-affine network torsor. To construct a cocycle from A, fix an "origin"
b, € A(v) for each vertex v. For an oriented edge e = (u,v) with covering morphisms g: u — e
and f: v — e, take y. := f(b,) — g(by), yielding a cocycle y := (ye)eec. For a different choice of
origins {b/ },cv, one may check
f(b}) — g(b},) = f((b;, —by) +by) —g((b}, —bu) +by)
= (f(by) — g(bu)) + (F¢ (b}, —by) — Fg(by, —by))

and conclude that [y’] = [y]. Thus this process yields a well-defined cohomology class [y”] €
H! (9;F). By a similar argument, when A and A’ are isomorphic as F-affine network torsors,
[y*]=[y"]

Finally, by observing that [y] — [AY] and [A] — [y”!] are inverse operations, we establish the
desired natural bijection. O
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Remark 7.3.13. The correspondence between isomorphism classes of F-affine network torsors
and cohomology classes H'(G; F) gives a way to discuss "the" affine network sheaf corresponding
to an affine network torsor. For an F-affine network torsor A, pick a 1-cochain b € H' (G; ) such
that [A] = [AP]. Since the stalks of AP are exactly the vector spaces stalks of the structure sheaf F
with their origins, we may view AP as an affine network sheaf (Definition 7.3.1). Different choices
of representative b yield different sheaves.

Let A5 denote the collection of isomorphism classes of F-affine network torsors. The bijective
correspondence Ay =~ H'(G;F) endows Ag with the structure of a vector space. This vector
space structure may be described explicitly at the level of affine network torsors.

Definition 7.3.14. Let A and A’ be F-affine network torsors. The sum AMH A’ is the F-affine
network torsor with the following structure.

¢ For each 0 € V11 ¢, the stalk over o is given by
(ABA")(0) = (A(0) x A'(0))/ ~,

where (x,x’) ~ (x +w,x" + (—=w)) for all w € F(0). The action of F(c) on (AHA')(0) is
given by w + [(x,x)] = [(w +x, x/)].

e For each covering morphism f : v — e, the restriction map (AHA)s : (AHA")(v) —
(AEA')(e) is given by

(ABA) e[ x)] = [(Ae(x), A+ ()]

One may straightforwardly check that the sum A A’ is a well-defined F-affine network torsor.
After "remembering the origin" and identifying A(0) =~ A’(0) = F(0), the stalk (AHA')(0) is
given by the vector space quotient F(o) @ F(0)/ ker( [1 1] ).

Remark 7.3.15. This sum operation may be compared to the Baer sum of two group extensions.
Given a pair of abelian groups A and B, a group extension

0>ASERLBSI

may naturally be viewed as a network A-torsor [46, Definition 4.2] over the base space B, viewed
as an edgeless graph with vertex set B. The stalk over b € B is given by the fiber p~'(b) < E,
with A acting freely and transitively via addition through i. Given two group extensions E; and
E,, the Baer sum is given by the Z-module quotient

{(e1,e2) eE1 ®E2 : pi(er) =pa(ea)}

E1 Haer E2 := {(i1(a), —i2(a)) : a€ A} ,
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and serves as a concrete representation for the abelian group structure of Ext'(B,A), which
classifies abelian group extensions. The network A-torsor corresponding to the Baer sum Eq Hpaer
E, is exactly the sum E; [HE; as network A-torsors. In the nonabelian case, one could plausibly
study a networked Schreier theory through inhomogeneous network torsors.

One may also describe the scaling of an F-affine network torsor.

Definition 7.3.16. Let A be an JF-affine network torsor, and A € k a scalar. The scaled network
torsor AA has the following structure.

¢ For each 0 € V11 ¢, the stalk over o is given by

(AA)(0) = (A(0) x F(0))/ ~,

where (x,w) ~ (x +w/,w + (=Aw’)) for all w’ € F(0). The action of F(o) on (AA)(0) is
given by w’ + [(x, w)] = [(x, w' +w)].
e For each covering morphism f : v — e, the restriction map (AA)¢ : (AA)(v) — (AA)(e) is
given by
AA) (O w)] = [(Ar(x), Fr(w)].

Again, it is straightforward to check that this is an F-affine network torsor.

Corollary 7.3.17. Define operations on Ag by [A] + [A'] = [ABA'] and A[A] = [AA]. These operations
define a vector space structure on Ag, which is isomorphic to the vector space structure on H'(G; 7).

Proof. Let @ : A5 — H'(G;F) denote the bijective map ®([A]) = [y”*]. It suffices to prove that @
is linear with respect to these structures. We first prove additivity of ®([A] + [A']) = O([ABHA']).
Fix an origin by = [(aq, al)] € AHA'. Working on an edge e with incoming covering morphisms
f:v—eand g:u— e, we compute:

(ABA)g(bu) — (ABA )¢(by) = [(Agaw, Agal)] — [(Aray, Afal)]
= [(Agau, Agau)] = [(Aray + (Afay — Ajay), Ajay)]
= (Agau —A¢ay) + (A;au _.A]/cav) .

It follows that ®([AEA']) = O([A]) + @([A’]). To prove @ respect scaling, we proceed by a
similar argument. Fix a scalar A € k and an origin by = [(as, Ws)] for each stalk of (AA)(0).
Again working on an edge e with incoming covering morphisms f : v — eand g : u — e, we

compute:

()\‘A)g<bu) - ()\‘A)f(bv) = [(Ag A, fTngWu)] - [(Afavr fTTdev)]
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= [(Agaw, Tgwy)] — [(.Agau, Fewy + A(Aray —Agau))]
= (Fgwu —Fw, ) + AM(Agay — Asay).

Writing ¢ for the 1-cochain with edge components c. = (Fgwy — Ffw,), we see that c is a
coboundary, from which we conclude that ®(A[A]) = O([AA)] = AD([A]). Thus @ is linear
isomorphism, and these operations give A4 a vector space structure. O

Using the identification Ay ~ H'(G;JF), we may better understand the structure of global
sections of affine network sheaves.

Definition 7.3.18. Let A be a finite dimensional F-affine network torsor. A point x € [ [,cy A(V)
is a global section of A if for all edges e € & with incoming covering morphisms f : u — e and
g:v — e, we have A¢(xy) = Ag(xy).

Notation 7.3.19. Given an JF-affine network torsor A, we may extend the zero-cochain concept and
write CO(G;A) := [[,ey A(v). This is itself an affine space under the component-by-component
action of the vector space C°(S;F). One recovers an affine coboundary map 5 : C°(G;4) —
cl(s; F) edgewise via

(éaffx)e = Agxy — Asxy,

where e is viewed as a directed edge from u tov, and f: u — e, g : v — e are the corresponding
covering morphisms. Note that the codomain is a 1-cochain of the structure sheaf F, as we are
taking differences in each affine edge stalk A(e).

Lemma 7.3.20. The affine coboundary map &% of an F-affine network torsor A has linear part given by
the linear coboundary of the structure of the structure sheaf F. Moreover, a global section of A is exactly a
point x € C°(S; A) such that 8% (x) = 0.

Proposition 7.3.21. Let A be a F-affine network torsor. The following are equivalent.
(i) A admits a global section.
(i) ®([A]) = [0] is the is the trivial cohomology class in H'(G; F).

(iii) For every affine network sheaf AP corresponding to the network torsor A, the inhomogeneous linear
system dx = —b is consistent.

Proof. ((i) <= (ii)): x is a global section of A if and only if for every directed edge e = (u,v)
with covering morphisms f: u — e and g : v — e, we have Agx, — A¢xy = 0. Hence A admits a
global section if and only if ®([A]) = [0].

(i) = (iii)): ®([A]) = [0] if and only if [A] = [AP] whenever b € [0] = R(5). Meanwhile,
b € R(9) if and only if dx = —b is consistent. O
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This result provides a direct interpretation of the cohomology of the structure sheaf . H! (G; )
exactly encodes obstructions to the consistency of the inhomogeneous linear system dx = —b, or
equivalently, the existence of a global section for an J-affine network torsor. These obstructions
may be visualized as translations of the affine hyperplane R(5*) away from the origin. Every
nontrivial cohomology class represents a different translation of the affine hyperplane. The o-
cohomology H°(S; F) similarly represents directions of non-variation for the affine coboundary
52, That is, H%(G;F) encodes what the space of global sections of A looks like, given that a
global section exists. Equivalently, H°(G; F) describes the directions of variation for the space of
OLS solutions to 5 = 0.

7.4 CONTINUOUS PIECEWISE AFFINE HILBERT SHEAVES

We now turn our attention to a class of non-smooth network Hilbert sheaves whose restriction
maps are continuous piecewise affine functions. Such sheaves will have a coboundary map which
is itself continuous piecewise affine, and a corresponding locally quadratic potential function.
Clarke gradient descent with respect this potential function yields (non-unique) globally defined
CO-nonlinear heat flows with well behaved long-term behavior.

7.4.1  Continuous piecewise affine maps

Let X be a finite dimensional vector space. A polyhedron in X is a subset P < X which is
the intersection of finitely many closed affine halfspaces. That is there are a collection of affine
functionals ¢; : R™ — R and constants b; € R such that

P={xeX:{(x)<bjforallj=1,...,n}.

A polyhedron P is necessarily closed and convex, but may be unbounded. P also has a collec-
tion of faces, which are sets of the form P n H, where H is an affine hyperplane of codimension
1, where P is entirely contained in one closed affine halfspace determined by H. Both P itself and
@ are faces of P.

Definition 7.4.1. Let X be a finite dimensional vector space. A polyhedral complex in X is a finite
collection of polyhedra P that satisfy the following axioms.

(i) Face closure. If P € P and Q is a face of P, then Q € P.

(ii) Intersection condition. If P and Q are polyhedra in P, the intersection P n Q is a (possibly
empty) shared face of P and Q.
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We call each polyhedron P € P a cell of P.

Given a finite dimensional vector space X, a polyhedral decomposition of X is a polyhedral
complex P such that | Jp.p P = X. To each polyhedral decomposition, there are a collection of top
dimensional cells {Ty,..., Ty}

Using such polyhedral decompositions, we may define the class of piecewise affine maps.

Definition 7.4.2. Let X and Y be finite dimensional vector spaces. A function f : X — Y is
continuous piecewise affine (CPWA) if there is a polyhedral decomposition P = {P;}i'; of X,
linear maps {A;}i;, and constants {b;}j' such that

f}Pj (X) = A]'X + b]'

for all x € Pj.

Notation 7.4.3. Given a continuous piecewise affine map f, we denote the underlying polyhedral
decomposition by P, and the affine map on the cell P € P¢ by fp(x) = Apx + bp.

By definition, a continuous piecewise affine map is continuous; when two polyhedra P; and

P; intersect in a shared face Py, all three maps f’ P f P/ and f ‘ p, agree on Py.. CPWA maps have

the following closure properties.

Lemma 7.4.4. Let f,f' : X > Y, g: X > Z, andh: W — Z,and i : Y — Z be CPWA maps, and let

f
A € R. The maps Mf, iof, f +f, [
g

] , and f @ h are all CPWA maps.
Proof. Let P and Q denote the polyhedral decomposition of X and Y underlying the maps f :
X — Yandi:Y — Z The composition io f is easily seen to be CPWA over the polyhedral
decomposition f~'(Q) whose underlying cells are intersections of the form P n f~1(Q) where
P e P and Q € Q. The scaling Af is CPWA since a scaling of an affine map is affine. Let P and Q be
the polyhedral decompositions underlying f and f’ respectively. Let P v Q denote their coarsest
common refinement via

PvO={PnQ:PePand Qe Q}.

.f
The map f + f’ is CPWA over the common refinement P v Q. The other maps [ ] ,and f@h can

g
be viewed as special cases of the sum.

Corollary 7.4.5. Let Xq,...,Xm,Y1,... Yy be a collection of finite dimensional vector spaces, and fy; :
Xj — Yi be a CPWA map for each pair of indices 1,j. Let X = @D; Xj and Y = @; Yi, and let M: X — Y
be the finite block map [fi;]. The map M is CPWA.
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Proposition 7.4.6. Every CPWA map f : X — Y is globally Lipschitz.

Proof. Let x,y € X, and let vy : [0, 1] — X be the straight line path from x toy. Let 0 = tp < t; <
- < tx = 1 denote the times at which y(t) switches between maximal cells of the underlying
polyhedral decomposition P. Letting M = max{[|Ap|op : P € P}, we compute:

]

1£06) W)y = L(tonat

k
j=1t-1

k t
<)
j=1v1t-1

Kty
<] mix-yla
j=1Yt-1

= M|x —yl.

d

Srom(o)] at

O]

Remark 7.4.7. CPWA maps arise in the context of feed-forward neural networks equipped with
the rectifiable linear unit (ReLU) map as an activation function. Each layer of the neural network
is the composition of an affine map f : R™ — R™ and the conic projection onto the positive
orthant ReLU(x1,...,xm)" = (max(O,x1 ), ..., max(0, xm))T. Since the conic projection ReLU is
CPWA, the composition of all layers is itself CPWA by Lemma 7.4.4.

7.4.1.1  Clarke gradients of CPWA maps

Let f : X — Y be CPWA with underlying polyhedral decomposition P. Let T < P denote the
collection of top dimensional cells. The maximal cells cover the entirety of X, and intersect in
lower-dimensional cells. The interior of P is given by the set

pm T,

TeT

where T is the non-empty topological interior of the maximal cell T.
The CPWA map f: X — Y is differentiable on P, with derivative Dyf = Atx for each top cell
T e Tand x € T. It follows that the potential function V/(x) = %Hf ()| has a well-defined gradient
on P given by
VV(x) = AT (Arx +br)

forall x e T.
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In general, f (and hence V) will not be differentiable on the boundaries of top cells; there can
be a cusp at the boundaries where top cells meet. However, since f is globally Lipschitz, the
potential function V is locally Lipschitz and admits a globally non-empty Clarke gradient

dV(x) = cvx {AT(Atx+br) : T 3xis a top cell containing x} .

When x is in the interior of a top cell of P, the Clarke gradient is exactly the gradient VV(x)
(modulo a pair of set braces). On the other hand, when x is in the intersection of multiple top
cells, the Clarke gradient is the convex hull of the gradients of the affine functions of the top cells
containing x.

Example 7.4.8. Consider the ReLU map ReLU : R — R defined by ReLU(x) = max(x,0). This

CPWA map has an associated potential function V(x) = %RGLU(X)Z. This potential function is

continuously differentiable on R, with gradient VV(x) = ReLU(x).

The shifted ReLU map f(x) = ReLU(x) + 1 is also a CPWA map with potential function V¢(x) =
1(1 + ReLU(x))?. This potential function is not differentiable at 0, but has a well-defined Clarke
gradient on R given by

0 ifx <0
oVe(x) =1410,1] ifx=0
X+ 1 if x > 0.

Example 7.4.9. Let f : R — R be the CPWA map f(x) = 1+ |x|. The potential function V¢(x) =
%Hf(x) |? has Clarke gradient

x—1 ifx <0
oVi(x) =9 [=1,1]  ifx=0

x+ 1 if x > 0.

Remark 7.4.10. While the Clarke gradient 0V¢ of the potential function associated to a CPWA
function f : X — Y is generically multi-valued, the set of points x € X such that JV(x) is multival-
ued has Lebesgue measure zero.

7.4.1.2  CPWA kernels

We now investigate the zero-sets of continuous piecewise affine maps. While lacking the requisite
categorical properties, we adopt the nomenclature of ker(f) for the zero set {x € X : f(x) = 0} for
aCPWAmap f: X —Y.
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Recall that the kernel of an affine map f(x) = Ax + b can be written as k + ker(A), where k is
any choice of a point k € ker(f). Note that ker(f) is empty if and only if b ¢ R(A). We may fully
characterize the kernel of a CPWA map by the kernel of its component maps; let f : X — Y be
CPWA with underlying polyhedral decomposition P and affine maps fp = Apx + bp for each
P € P. Let kerp(f) = ker(fp) n P, treating fp as a globally-defined affine map fp : X — Y. The
kernel of f is exactly

ker(f) = | ] kerp(f).

Pe®

For a linear map A : X — Y between finite dimensional Hilbert spaces, the kernels ker(A) and
ker(A*A) agree. We now investigate the corresponding relationship for CPWA maps. We begin

with the following lemma about affine maps.

Lemma 7.4.11. Let f(x) = Ax + b be an affine map from X to Y. We have an agreement of kernels
ker(A*f) = ker(f) if and only if ker(f) # 0.

Proof. We always have the inclusion ker(f) < ker(A*f). Since ker(A*A) = ker(A), if ker(f) is
non-empty, there is a k € ker(f). We may compute:
ker(f) = k + ker(A)
=k + ker(A*A)
= ker(A*f).
Therefore if ker(f) is non-empty, then ker(A*f) = ker(A). Conversely, a least-squares solution

xLs to the equation Ax = b must satisfy the normal equation A*Ax = A*b, which forces —xis €
ker(A*f). Therefore ker(f) # ker(A*f) when ker(f) = @. O

7.4.2 CPWA dynamics

Let f: X — Y be a CPWA function, and V the potential function V(x) = [ (x)[?. We may define
the CPWA Laplacian £ as the multivalued Clarke gradient £ := JV. This CPWA Laplacian may

be written explicitly as
L(x) = cvx{ATf(x) : T 3 xis a top dimensional cell} .

The Laplacian £ is single-valued on the full-measure subset P < X. Using the CPWA Laplacian,
we may define dynamics on X via x € —£x. Since £ is generically discontinuous and multi-valued,

we consider Filippov solutions to this differential inclusion.

164



Definition 7.4.12. Let f : X — Y be a CPWA function with CPWA Laplacian £ : X — X. A CPWA
heat flow of f on [0, T] with initial point xo € X is an absolutely continuous curve x(t) € X for
t € [0, T] such that x(0) = x¢ and x(t) € —£(x) for all t.

Remark 7.4.13. In the language of control theory, the dynamics x € —£(x) of CPWA heat flow
define a state-dependent switch affine system. These systems have recently been extensively
studied [50, 68, 69, 71, 111], with applications to AC/DC power conversion [3, 105] and neural
networks [41, 116]. Most of the literature approaches state-dependent switch affine systems from
the perspective of controllability, and the problem of defining a state-dependent switching rule
that has well-behaved dynamics. More importantly, CPWA dynamics differ from general switch
affine systems in that the potential function V defines a global Lyapunov function, granting
additional control over trajectories.

Proposition 7.4.14. Let f: X — Y be a CPWA map with CPWA Laplacian £. The Cauchy problem

x € —Lx

x(0) = xo

has a globally defined solution for each initial value xo.

Proof. Since f is Lipschitz continuous, the potential function V(x) = J[f(x)|? is locally Lipschitz.

It follows that the negative Clarke gradient —0V/(x) is an upper semicontinuous map [24]. Local
existence of a Filippov solution up to the boundary of the closed ball B(0,r) < X follows [39,
Theorem 7.2]. Since f is locally affine, we may bound the norm x| < M|x| + a for a suitable
choice of constants M and a. Thus the trajectory cannot escape to infinity in finite time, and all
Filippov solutions can be extended to the time-interval [0, ). O

Uniqueness, on the other hand, cannot be guaranteed in general. While Filippov trajectories
inside top-cells are unique, when a trajectory gets stuck in the boundary of a collection of cells,
trajectories can be extended in multiple distinct ways according to the choice of a different value
in —L.

Example 7.4.15. Consider the CPWA f: R — R given by f(x) = 1 — |x|. For every T > 0, the path

0 ifo<t<T
Xt =

1—elt ift>T

is a Filippov solution to the CPWA heat flow of f. This is essentially CPWA modification of
Norton’s dome [94].
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The asymptotic behavior of a bounded CPWA heat flow is governed by the following lemma.

Lemma 7.4.16. Let x be a Filippov solution to the heat flow of a CPWA map f : X — Y. If x¢ is bounded,
then xo, := limy_.o0 X¢ exists and is a generalized critical point of V(x) = J|f(x)|2.

Proof. This follows directly from the work of Drusvyatskiy, loffe, and Lewis on generalized gra-
dient descent. Identify X =~ IR™. Since V(x) is piecewise a polynomial in the underlying variables
X1,...,Xn, and each polyhedral region on which V is piecewise-defined can be expressed as the
solution set to finitely many linear inequalities, the function V : R™ — R is semialgebraic. Fix
a trajectory x{ which is constrained to a compact set C < R™. V(x) is Lipschitz on C, so x is a
so-called curve of near-maximal slope [37, Proposition 6.4] and moreover converges to a generalized

critical point of V [37, Corollary 6.7]. O

By restricting our attention to class of Filippov solutions to the CPWA heat flow that avoid
spending superfluous time on the boundaries of cells, we may prove the boundedness of trajec-

tories.

Definition 7.4.17. Let f : X — Y be a CPWA function, and let x; be a CPWA heat flow. x; is fast

if x; € —L(x¢) has maximal norm for all t where x; is defined.

Example 7.4.18. Consider the CPWA Norton’s dome (Example 7.4.15) with CPWA function
f(x) = 1 —|x|. A solution x¢ to the CPWA heat flow of f with initial value xo = 0 is fast if
and only if x¢ # 0 for all t > 0.

Proposition 7.4.19. Let f: X — Y be a CPWA function, and that x. is a fast solution to the CPWA heat
flow. If x¢ is in the boundary of a top dimensional cell T for all t € [T, T + €), then every CPWA heat flow
Yt such that y¢ = x¢ for all t < T slides for all t € [T, T+ €).

Proof. Suppose there is such a Filippov solution y:. Let to := inf{t : y¢ # x¢}. At time to, there
must be a vector in —£(x¢,) which points outside of the interior of the polyhedral face M on
which x; is sliding. Since every point in —£{(x¢,) projects onto the same point M, the velocity

selection at time tp must be non-maximal, contradicting the fact that x; is a fast solution. O

Remark 7.4.20. This argument essentially demonstrates that fast solutions avoid superfluous
sliding along the boundary of a cell, commonly called a sliding mode for a Filippov solution to a

discontinuous differential equation. Whenever a fast solution x; can exit a sliding mode, it does.

Theorem 7.4.21. Let f : X — Y be a CPWA function with potential function V(x) = J|f(x)|%. Every
fast solution to the CPWA heat flow is bounded.

Proof. Let x be a fast solution to the CPWA heat flow. We fix the following notation.
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¢ 7 is the finite collection of top dimensional cells underlying f.

® g7(x) = A1x + by is the restriction of f to T € 7.

o =[xy

o 5y =max{r; ' |[Aix¢| : TeTand x e T}.

* B := maxte7 b1

e Cp := maxyey |[ATbT].

* 0, is the smallest positive singular value of a linear map At with T € 7.

First, by the reverse triangle inequality, we may bound
%] = ourese — Co 9
for all t > 0. When x{ # 0, by the Cauchy-Schwarz inequality we may bound

. Xt, X
Tt = —M < BSt. (10)
T¢

Fix an € € (0,1], and set R := 4Cy(o4€)~'. For each j € N, set €j == 277¢e and Rj := 2JR. For each
pair j, k € N, let Aj denote the set

A]'k = {t eR>p : Rj ST < RjJr] and €1 <s¢ < €k}.

The union (J; , Ajk = {t : 7(t) > Rand s > 0}. We now work to bound the integral

St dt = f St dt.
LtZTtZR} %; A]'k

When t € Aji, we may bound o,r¢st > 04Rjexy1 = Co2/t!' k. For fixed k, when j > k+1,
Equation (9) ensures that ||x¢| > 3Co. We may derive the inequalities

o0
> H(Au3Co < | el de< |-l a < Vixo),

j=k+1 ikt Ak
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where p denotes Lebesgue measure. Bound the sum ;1 .4 u(Ajk) < V(x0)(3Co)~2 and the
integral >}~ § Ay St dt < exV(x0)(3Co)~2. A similar argument yields for fixed j an upper
bound }}, ; § Ay Stdt < ejV(x0)Cy?. Using these upper bounds, we compute:

St dt = f St dt
LtZTtZR} %; A]'k

< D eV(x0)(3Co) 2 + ) €5V(x0)Cy?
k>0 i=0

2
= geV(xo)Caz.

We may now prove that x is bounded. By Equation (10), we have a bound

2
suprt<R+BJ St dt<R+—0eV(xo)C52,
{t:r¢=R} 9

>0
which is finite. Therefore x; is bounded. O

Remark 7.4.22. In general, fast CPWA heat flows need not converge to local minima of the
potential function V. A fast CPWA heat flow may converge to a generalized saddle point of V.
However, after finding a saddle point, one may start a new fast solution from the saddle point
that immediately enters the interior of a top dimensional cell by the following lemma.

Lemma 7.4.23. Let f : X — Y be a CPWA map with potential function V(x) = %Hf(x) |2. Let xo be a
generalized critical point of V such that every CPWA heat flow x initialized at xo is constant. xo is a
local minimum of V.

Proof. Without loss of generality suppose that xo = 0. If 0 is contained in the interior of a top-
dimensional cell T, then 0 is an OLS solution to A1x = —bT, and hence a local minimum of V.
Instead, suppose M is the polyhedral cell of minimal dimension whose relative interior contains
0. Let T be a top-dimensional cell such that M < dT. The constrained gradient VV/|, , (0) is exactly
the orthogonal projection of A3f(0) onto M. This quantity is independent of the choice of top-
dimensional cell T. Since there can be no non-constant sliding mode for Clarke gradient descent
starting from 0 in M, it must be that VV|,,(0) = 0. Therefore A%f(0) is orthogonal to M, and
points outside of T. Therefore for any vector v € T, the directional derivative (A5 f(0),v) > 0. This

holds for every top cell, so 0 must be a local minimum of V. O
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7.4.3 Piecewise affine sheaves

A CP-nonlinear network sheaf whose restriction maps are continuous piecewise affine maps has
a coboundary operator which is itself CPWA.

Definition 7.4.24. Let § = (V, ) be a finite network. A piecewise affine Hilbert sheaf F on G

consists of the following data.
¢ A finite dimensional Hilbert space (o) for each 0 € V U € called the stalk over o;

¢ For each covering map f : v — e in G, a choice of a continuous piecewise affine map
Fr: F(v) - F(e).

Remark 7.4.25. We may assume, without loss of generality, that all restriction maps out of a stalk

F(v) are defined with respect to a common polyhedral decomposition P.

By Lemma 7.4.4 and Corollary 7.4.5, the coboundary map & : C°(G;F) — C'(G;T) is itself
CPWA. The C°-nonlinear heat flow with respect to the sheaf Laplacian exactly encodes CPWA
heat flow with respect to the coboundary map o. Under a fast heat flow selection rule, Theo-
rem 7.4.21 ensures that heat flows converge to generalized critical points.

Remark 7.4.26. Following Remark 7.4.7, piecewise affine Hilbert sheaves could potentially serve
as the foundation for a different architecture for sheaf neural networks than that of Hansen
and Gebhart [53]. By allowing the rectifiable linear unit (and projections onto polyhedral cones
more generally), the activation function may be directly incorporated into the restriction maps
themselves. Alternatively, one may consider using a smooth activation function like soft-max and

a smooth nonlinear Hilbert sheaf.
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