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A B S T R A C T

CELLULAR SHEAVES OF HILBERT SPACES

Julian Joseph Gould

Robert Ghrist

This dissertation extends the theory of cellular sheaves from finite-dimensional to infinite-
dimensional Hilbert spaces, thereby broadening the scope of cellular sheaf theory through the
incorporation of functional and non-smooth analytic techniques. While classical cellular sheaves,
particularly weighted cellular sheaves valued in finite-dimensional Hilbert spaces, have found
applications in network analysis, opinion dynamics, and neural networks, some applications
naturally require sheaves valued in infinite-dimensional spaces.

The passage from finite to infinite dimensions introduces fundamental complications that ne-
cessitate careful theoretical development. When restriction maps are unbounded operators with
partial domains, the composition of morphisms requires precise domain considerations, cochain
complexes may fail to satisfy the standard hypotheses for cohomology theory, and even elemen-
tary sheaf operations become problematic. This work systematically addresses these challenges
through a trio of technical tools: the restriction categories of Cockett and Lack [26], the formalism
of Hilbert complexes as developed by Brüning and Lesch [17], and the analysis of block operators
between direct sums of Hilbert spaces.

The central construction of this thesis is the Hilbert sheaf. Pre-Hilbert sheaves are introduced
as functors from combinatorially well-behaved acyclic categories to the category of Hilbert spaces
and unbounded operators. While these objects generalize weighted cellular sheaves directly, they
may exhibit pathological behavior. The dissertation therefore identifies necessary conditions for
well-behaved objects, leading to the definition of Hilbert sheaves proper. A Hilbert sheaf is a
pre-Hilbert sheaf whose associated coboundary operators are closable, ensuring the formation of
genuine Hilbert complexes.

The theoretical framework encompasses several key developments. First, it establishes condi-
tions under which Hilbert sheaves admit meaningful cohomology groups and spectral theory.
Second, it identifies distinguished classes including bounded Hilbert sheaves (where all restric-
tion maps are bounded) and closed Hilbert sheaves (where coboundary operators have closed
range), each possessing favorable computational and theoretical properties. Third, it develops
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dynamical systems on these sheaves, including heat flows, wave propagation, and nonlinear dif-
fusion processes, which serve as tools for the study of consensus problems.

This work establishes cellular sheaves of Hilbert spaces as a rigorous mathematical framework
in the intersection of algebraic topology, functional analysis, and applied mathematics, opening
new avenues for the analysis of complex systems with infinite-dimensional local structure.
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C E L L U L A R S H E AV E S

This introductory chapter serves two distinct purposes. First, we review the established theory of
cellular sheaves and their cohomology, following the work of Shepard [112] and Curry [33]. Sec-
ond, we simultaneously extend this technology from the traditional setting of partially ordered
sets to the more general setting of graded acyclic categories (GACs). This generalization enables
a systematic treatment of network sheaves on graphs with self-loops and, more broadly, allows
us to track not just that cells are glued together, but how they are glued.

Section 1.1 introduces acyclic categories—posets that permit multiple morphisms between ob-
jects while maintaining acyclicity. When equipped with a grading, these GACs provide the ap-
propriate domain for cellular sheaves that admit cohomology and spectral theory. Section 1.2
shows how GACs arise from cell complexes, introducing weakly-regular cell structures and es-
tablishing an isomorphism between face categories and discrete exit path categories. A suitable
generalization of signed incidence relations from posets to GACs is given by assigning parities
to morphisms rather than object pairs. This structure enables the alternating signs necessary
for cohomological cancellations while accommodating multiple parallel morphisms. With these
foundations, Section 1.4 defines cellular sheaves as functors F : P Ñ D from a graded acyclic cate-
gory P with a signed incidence structure to a data category D. The grading and signed incidence
combine to yield coboundary operators whose composition vanishes, producing well-defined
cohomology groups that are invariant under different choices of signed incidence structure.

1.1 acyclic categories

An acyclic category P can be viewed as a "poset with extra arrows." Like a partially ordered set, it
has no non-trivial end-to-end loops: every endomorphism f : x Ñ x is the identity. Unlike a poset,
however, the homset Ppx,yq may contain multiple distinct morphisms, and composable chains
may merge and branch. This added flexibility makes acyclic categories a natural language for
encoding nonbinary incidence data. When gluing objects with an ambient notion of dimension,
such as cells of a CW complex, the resulting acyclic category can be graded, assigning a rank to
every object capturing how far up the chain of the category the object lives. For a comprehensive
introduction to acyclic categories, see [75, Chapter 10].
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Definition 1.1.1 (Acyclic category [75]). A category A is acyclic if it satisfies the following condi-
tions:

(i) ApX,Xq “ tidXu for every object X.

(ii) If f : x Ñ y is an isomorphism, then y “ x and f “ idx.

A morphism f : x Ñ y in an acyclic category A is indecomposable if f cannot be written as a
composition of two non-identity morphisms.

Acyclic categories may be thought of as an ordered structure that mildly generalize partially
ordered sets (posets). Every poset pP, ďq can be viewed as a (small) acyclic P with objects ObpPq “

P and morphisms:
Ppx,yq contains a unique morphism ðñ x ď y.

A general acyclic category A allows for distinct parallel morphisms between a pair of objects. One
may think of A as a poset that allows for multiple distinct witnesses of x ď y. Or equivalently, a
poset in which one object can be greater than another in multiple ways. Each acyclic category A

has an underlying poset structure defined by

x ď y ðñ Apx,yq is inhabited.

Equivalently, one may make a choice of a thin, wide subcategory of A to find a categorical rep-
resentation of the underlying poset. Hence to say that x ď y in an acyclic category asserts the
existence of a morphism x Ñ y, but does not give any information about how many distinct
morphisms live in Apx,yq, nor how they compose with other morphisms. In the interest of pre-
serving the intuition of an acyclic category as a generalization of a poset, we will regularly use P

to refer to an acyclic category.
To further borrow from the language of posets, we say that y covers x in an acyclic category P,

written x◁1 y, if y covers x in the underlying poset. That is, x◁1 y if and only if x ď y and there
is no point z such that x ň z ň y. When y covers x, we call each morphism in Ppx,yq a covering
morphism. As a shorthand, when f : x Ñ y is a covering morphism, we will write f P px◁1 yq. It
is clear that every covering morphism is indecomposable, but the converse need not be true.

We may form a category AcycCat of small acyclic categories whose objects are acyclic categories
and whose morphisms are functors.

Definition 1.1.2. Let AcycCat be a category consisting of the following data.

• Objects. An object of AcycCat is a small acyclic category P.

• Morphisms. A morphism f : P Ñ Q is a functor.

Equivalently, AcycCat is the full subcategory of Cat whose objects are acyclic.
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1.1.1 Graded acyclic categories

Arbitrary acyclic categories are insufficiently structured for the theory of cellular sheaves. The
underlying poset of an acyclic category may contain densely ordered segments such as those
found in Q and R, or have limit points like the ordinal ω ` 1. Such partial orders lack the
combinatorial structure required for the algebraic topology we wish to capture. We will stipulate
that our acyclic categories come equipped with a certain combinatorial map, called a grading.
Our definition directly generalizes that of a graded poset.

Let pN, ďq denote the natural numbers equipped with their usual ordering. This is a poset,
and hence an acyclic category.

Definition 1.1.3 (Graded acyclic category). Let P be an acyclic category. A grading on P is a
functor r : P Ñ pN, ďq that satisfies the following conditions.

(i) If
Ť

yPP Ppy, xq “ tidxu, then rpxq “ 0.

(ii) If y covers x in P, then rpyq “ rpxq ` 1.

The value rpxq P N is the rank, grade, or dimension of x, and the pair pP, rq a graded acyclic
category (GAC).

An acyclic category admits at most one grading; when a grading exists on P, it can be con-
structed inductively by first assigning rank 0 to each object x with

Ť

yPP Ppy, xq “ tidxu, and
assigning rpyq “ n` 1 if and only if y covers an object of rank n. When the grading is clear from
context, we will conflate a GAC pP, rq with its underlying acyclic category P.

Notation 1.1.4. When x ď y in a GAC and rpyq “ rpxq ` k for a given k ě 0, we write x◁k y.
Moreover, for f : x Ñ ywith x◁k y, we adopt the shorthand Covpfq for the collection of sequences
of composable covering morphisms pf1, . . . , fkq such that fk ˝ ¨ ¨ ¨ ˝ f1 “ f.

Example 1.1.5. The following are examples of graded acyclic categories:

1. Any graded poset is a graded acyclic category.

2. Specifically, any finite distributive lattice is graded by its height function h : P Ñ N that
sends an element x P P to the length of the longest increasing chain x0 ň x1 ň ¨ ¨ ¨ ň x.
However, not all finite posets are graded. Consider the pentagonal lattice N5, consisting of
five elements tK,a,b, c, Ju ordered such that K ă a ă b ă J and K ă c ă J, but c is
incomparable to a and b. This lattice cannot be graded, as the pa,bq-half of the pentagon
yields rpJq “ rpKq ` 3, while the c-half yields rpJq “ rpKq ` 2.
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3. The natural numbers with their usual ordering are graded by the identity map. Indeed, this
is the only infinite graded total order up to isomorphism.

4. A quiver is a multi-graph with directed edges (self loops allowed). To each quiver Q “

pV,Eq, we may construct a free category, whose objects are exactly the vertices V , with a
morphism v Ñ w for each path from v to w along edges in the quiver. This construction
induces a functor

Free : Quiv Ñ Cat.

Call a quiver acyclic if there is no non-trivial path v⇝ v for any vertex v. The free category
FreepQq is an acyclic category if and only if the quiver Q is acyclic. Moreover, FreepQq is a
non-empty GAC if and only if the following conditions hold.

(i) There is at least one minimal vertex with no incoming edges.

(ii) For every vertex v, every path m ⇝ v where m is a minimal vertex has the same
length.

The rank rpvq is exactly the unique path length from a minimal vertex.

5. Given two graded acyclic categories pP, rq and pQ, sq, the product category P ˆ Q inherits a
grading by pp,qq ÞÑ rppq ` spqq. In the event that P and Q are graded posets, the resulting
order and grading correspond to that of the Pareto order pp,qq ďPˆQ pp 1,q 1q if and only if
p ďP p

1 and q ďQ q
1 on P ˆ Q.

6. The face poset FcpGq of a regular cell complex G is graded by the dimensions of the faces
(Section 1.2).

Definition 1.1.6. Let pP, rq be a graded acyclic category. P is levelwise-finite if, for every n P N,
there are finitely many objects x P P such that rpxq “ n, and for each pair of objects x,y P P, the
homset Ppx,yq is finite.

1.1.2 Morphisms of GACs

Let pP, rq and pQ, sq be graded acyclic categories. While every functor ϕ : P Ñ Q defines a
morphism of acyclic categories, such a natural transformation need not respect the gradings of
P and Q. There are a few important classes of grade-respecting maps for the theory of cellular
sheaves.

Notation 1.1.7. Let P be an acyclic category. For an object x P P, we let pÓ xq denote the down-set
of x, consisting of the full subcategory of P containing all y P P such that y ď x in the underlying
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poset. Similarly, we let stpxq denote the star of x, consisting of the full subcategory of P containing
all objects y ě x above x in the underlying poset structure.

Definition 1.1.8. Let pP, rq and pQ, sq be GACs. A functor ϕ : P Ñ Q is a cellular map if the
following conditions hold for all objects σ P P.

(i) spϕpσqq ď rpσq.

(ii) tϕpyq : y P pÓ σqu “ pÓ ϕpσqq.

Definition 1.1.9. Let ϕ : pP, rq Ñ pQ, sq be a cellular map.

• ϕ is a cellular homeomorphism if ϕ is an isomorphism of categories.

• ϕ is an inclusion if ϕ is injective (on both objects and hom-sets).

• ϕ is a covering map if for each object y P Q, the pre-image of the star ϕ´1pstpyqq is a disjoint
union of isomorphic copies of stpyq, each of which is mapped isomorphically onto stpyq by
ϕ.

Remark 1.1.10. The nomenclature of "cellular," "covering," and "homeomorphism" are meant to
evoke the similar concepts for cellular structures (Definition 1.2.17).

1.2 cell complexes

Acyclic categories are readily found in the theory of cell complexes and stratified spaces, through
the identification of cells with objects and gluing data with morphisms. Such acyclic categories,
subject to additional regularity constraints, serve as a fruitful setting for the theory of cellular
sheaves. In the literature on cellular sheaves, it is common to use the face poset of a regular cell
complex or a simplicial complex as the domain for a functor [33, 45, 54, 102]. We briefly review
these concepts, as well as introduce new a class of cellular decompositions, akin to regular cell
structures, that generate a suitable graded acyclic category for the theory of cellular sheaves.

1.2.1 Regular cell complexes

Let Dn and Dn denote the open and closed balls of dimension n respectively for n ě 1. We
adopt the convention that D0 “ D0 is the one-point space.

Definition 1.2.1 (Regular cell structure). Let X be a Hausdorff space. A regular cell structure on
X consists of the following data.
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• A partition of X into disjoint open cells tXα : α P PX u, each endowed with a dimension
dα P N.

• For every cell Xα, a continuous attaching map ϕα : Ddα Ñ Xα, where Xα is the closure of
Xα in X.

These data must satisfy the following axioms.

(i) Locally finite. Every point of X has a neighborhood that meets only finitely many cells.

(ii) Frontier. If Xα XXβ ‰ ∅ then Xβ Ď Xα.

(iii) Homeomorphic attaching maps. Each ϕα is a homeomorphism of pairs pDdα ,Ddαq
–−−Ñ

pXα,Xαq, i.e. it is a homeomorphism Ddα – Xα whose restriction to the open ball is the
homeomorphism Ddα – Xα specified above.

Notation 1.2.2. A regular cell structure for a topological space X refers to the full the collection
pXα,ϕαqαPPX of cells and attaching maps. We will often adopt the shorthand X “ pXα,ϕαqαPPX ,
and utilize the notation |X| for the underlying topological space. A cell Xα will often be identified
with its index α P PX.

While this definition of a regular cell complex, due to MacPherson [85] and transmitted
through Curry [33], is somewhat non-standard, the attaching maps and cells are equivalent to
those of a locally-finite regular CW complex—a locally-finite CW complex whose attaching maps
are homeomorphisms.

Proposition 1.2.3. Let X be a Hausdorff space. The data of a regular cell structure pXα,ϕαqαPPX for X is
equivalent to the data of a locally-finite regular CW-structure for X.

Proof. It is straightforward to check that a locally-finite regular CW structure defines the data of a
regular cell complex. Conversely, suppose that X “

Ť

αPPX
Xα is a regular cell complex structure

with attaching maps ϕα : Ddα Ñ Xα. By [57, Proposition A.2], to confirm that these maps define
a CW-structure for X, we must verify the following conditions.

1. Each ϕα restricts to a homeomorphism from Ddα onto its image, these images are all
distinct as we vary α P PX, and their union is X.

2. For each α, the image ϕαpBDdαq is contained in the union of a finite number of cells of
dimension less than dα.

3. X is topologized in the weak topology with respect to its cells. That is, a subset A Ď X is
closed if and only if AXXα is closed for each α P PX.

7



Condition 1 is immediate from the definition of a cell complex. Condition 2 is also follows
straightforwardly from the frontier condition and local finiteness.

Condition 3, which says that X is topologized with the weak topology, is only slightly more
complicated to check. If A Ď X is closed in X, then AX Xα is closed by definition. Conversely,
suppose that A X Xα is closed in Xα for each α P PX. For a point x P XzA, we may take a
neighborhood Ux that intersects finitely many cells Xα1 , . . . ,Xαn of X. In each cell Xαj , since
AXXαj is closed in Xαj , we may take an open set Vj Ď X such that VjXAXXαj is empty. Taking
the intersection

Wx “ Ux X

n
č

j“1

Vj

gives a new open set in X, which contains x and is contained in XzA. Hence we may write XzA

as the union
Ť

xWx, proving that A is closed, and that X is a regular CW complex.

Given a cell structure X with cells tXα : α P PXu, the structure of the decomposition of X into
cells induces a poset structure (and hence an acyclic category structure) on the index set PX. For
indices α,β P PX, the ordering is given by:

α ď β ðñ Xα Ď Xβ.

The frontier condition ensures that this is a partial order structure. We call this order structure
pPX, ďq the face incidence poset (or simply the face poset) of X. In this poset structure, when
α ň β and there is no cell α ň γ ň β, we say that β covers α.

Remark 1.2.4. Regular cell complexes are less prevalent in algebraic topology than the usual
CW complexes. The main practical difference is that regular cell complexes are more rigid and
structured, giving the cellular decomposition an extremely well-behaved combinatorial flavor. If
we build out attaching maps, the cells attach to each other in a clean way, with no "pinching" or
"folding" allowed. This makes them easier to work with computationally and more suitable for
certain applications. We catalog a few of these useful structural properties here. Given a regular
cell complex X with face poset PX, the following hold.

1. PX is naturally graded by the dimensions of the underlying cells. One may check that
for any cell Xα of dimension n` 1, the frontier condition enforces that the image of the
boundary BDdα under the attaching map ϕα is a union of closures of cells of dimension n.
Moreover, there can only be finitely many cells in this image by local finiteness.
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2. PX has the diamond property1; every closed interval of length 2 in PX has exactly four
elements. That is, if α◁2 γ in PX, then there are exactly two distinct elements β1,β2 P PX

such that α ň βj ň γ.

3. The work of Björner [12], as well as Danaraj and Klee [35], allows face posets of regular
cell structures to be directly identified directly from their poset structure. In particular,
given a poset P, if after attaching a bottom element K, P Y tKu is both thin and shellable—
a technical condition that captures some of the global gluing properties of regular cell
complexes, like how k-cells can always be thought of as being glued to pk´ 1q-cells.

4. The topological space |X| can be reconstructed (up to homeomorphism) from its face poset.
Hence, we may safely conflate a regular cell complex with it face poset. See [52, Proposition
1.1.1] for details.

Regular cell maps also come equipped with a class of combinatorially well-behaved maps
between them.

Definition 1.2.5 (Regular cell map). Let tXαuαPPX and tYβuβPPY be regular cell complexes. A
regular cell map is a continuous map f : |X| Ñ |Y| such that the following conditions hold.

(i) Each cell Xα of X is mapped by f surjectively onto a cell Yβ of Y, with dimpXαq ě dimpYβq.

(ii) The restriction f
∣∣
Xα

: Xα Ñ Yβ factors as

Xα RdimpXαq RdimpYβq Yβ
– P – ,

where P is an orthogonal projection map.

If a regular cell map f is a homeomorphism, it restricts to a cell-wise homeomorphism. We call
such a map a regular cell homeomorphism.

Each regular cell map f : X Ñ Y induces a poset map PX Ñ PY via α ÞÑ β if and only if f maps
Xα onto Yβ. However, not every poset map arises from a regular cell map. For more details on
regular cell complexes, their properties, and maps between them, see [29, 43].

1.2.2 Weakly-regular cell structures

There are many topological spaces with natural cell structures that are not regular. For example,
consider the usual decomposition of the torus and the Klein bottle, as shown in Figure 1, as cell

1 Such a poset is commonly referred to as thin in the literature [59] [60] (dating back to Björner [12]), but we use the
term "diamond property" to disambiguate from the notion of a thin category [126].
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structures with a single vertex, two edges, and one face. These are not regular cell structures as
the 2-cells are not glued homeomorphically along their boundary. While these spaces do admit
regular cell structures, they require more cells. Nonetheless, these cell structures fit into a more
general schema of weakly-regular cell structures, obtained by weakening the requirement of
attaching maps being homeomorphisms on their boundaries.

Figure 1: Non-regular cell structures for the torus (left) and Klein bottle (right)

Definition 1.2.6 (Weakly-regular cell structure). Let X be a Hausdorff space. A weakly-regular
cell structure on X consists of the following data.

• A partition of X into disjoint cells tXα : α P PX u, each endowed with a dimension dα P N.

• For each cell Xα, a regular cell decomposition Kα of the closed ball Ddα containing a single
cell of top dimension dα.

• For each cell Xα, a continuous attaching map

ϕα : Ddα Ñ Xα

that maps the interiorDdα (the unique cell of dimension dα in Kα) homeomorphically onto
Xα.

These data must satisfy the following axioms.

(i) Locally finite. Every point of X has a neighborhood that meets only finitely many cells.

(ii) Frontier. If Xα XXβ ‰ ∅ then Xβ Ď Xα.

(iii) Cell-wise homeomorphism. For every cell σ P Kα the restriction ϕα
ˇ

ˇ

σ
: σ

–−−Ñ Xβ is a
homeomorphism onto a unique cell Xβ of the same dimension as σ.

10



Remark 1.2.7. The cell-wise homeomorphism condition (plus the axiom of the frontier) ensures
that the attaching map ϕα attaches Xα along the closures of cells of dimension dα ´ 1, albeit
not necessarily homeomorphically. This will preserve the graded structure of face poset while
allowing for more general attaching maps.

Remark 1.2.8. This notion of a weakly-regular cell complex is similar to, but distinct from that
of a semi-regular CW-complex [67]. There is a different generalization of regular cell structures
given in the work of Shepard [112] and Curry [33]. These authors instead define a cell complex
by replacing Part iii in the definition of a regular cell complex with the requirement that the cells
tXα : α P PXu Y t8u are the cells of a regular cell complex structure for the one-point compact-
ification of X. There is no containment relationship between weakly-regular cell complexes and
the cell complexes of Curry and Shepard.

Notation 1.2.9. Let Kα be the regular cell structure for a closed dα-ball in a weakly-regular cell
structure. We let BKα denote the collection of cells in Kα that make up the boundary BDdα . BKα

contains every cell of Kα except for the unique top-dimensional cell. For a cell σ P BKα, we
further denote the collection of cells τ ‰ σ such that τ Ď σ by Bσ.

Example 1.2.10. Every regular cell structure is a weakly-regular cell structure. In particular, for
each cell Xα, the regular cell structure BKα for the boundary BDdα may be found by identifying
Kα with the cells of X in the image ϕαpBDdαq. The converse is not true, as shown in the next
example.

Example 1.2.11. Consider the usual CW-structure for the circle S1 with one 0-cell and one 1-cell.

‚

This is not a regular cell structure, as the boundary of the unique 1-cell is not glued homeomor-
phically. It also fails to be a cell complex in the sense of Shepard, as the one-point compactification
adds a disjoint point and fails to fix the irregularity. However, when we decompose the boundary
of the 1-cell as a pair of 0-cells, we see that this is a weakly-regular cell structure. On the other
hand, the usual CW-structure for the n-sphere with one 0-cell and one n-cell for n ě 2 fails to be
a weakly regular cell complex.

While weakly-regular cell structures are more flexible than regular cell structures, they are no
more general topologically.

Proposition 1.2.12. Let X be a Hausdorff space. If X admits a weakly-regular cell structure, it admits a
cell regular structure.

11



Proof. Let pXα,ϕα,KαqαPPX be a weakly-regular cell structure on X. We may refine this weakly-
regular cell structure to a regular cell structure as follows. For each index α P PX, take Oα to be
a new 0-cell at the center of Ddα , and for each σ P BKα, a pdimpσq ` 1q-cell:

Yα,σ “ ttx` p1´ tqOα : x P σ, t P p0, 1qu.

The collection BKα Y tOαu Y tYα,σ : σ P BKαu is a regular cell structure for the close ball Ddα .
Removing the boundary cells BKα similarly gives a regular cell structure for the open ball. Let
Ôα :“ ϕαpOαq, and Ŷα,σ :“ ϕαpYα,σq. We claim that the cells

ď

αPPX

`

tÔαu Y tŶα,σ : σ P BKαu
˘

,

with attaching maps given by restricting the attaching maps for Xα, form a regular cell structure
for X. We check the axioms.

(i) Locally finite. Let x P X. There is a neighborhood U Q x that intersects only finitely many
cells Xα. Since the boundary of the dα-ball is compact, Kα has only finitely many cells, and
U can only intersect finitely many Ŷα,σ. Hence the new structure is locally finite.

(ii) Frontier. This follows from the fact that the axiom of the frontier was satisfied in the original
decomposition Xα, as well as in the regular cell-decompositions of the closed ball Ddα .

(iii) Homeomorphic attaching maps. For each cell Ŷα,σ, the attaching map ψα,σ is given by
the restriction ϕα

∣∣
Yα,σ

, where we have identified the open ball DdimpŶα,σq with Yα,σ itself.
ϕα,σ is hence a homeomorphism of Yα,σ onto Ŷα,σ by definition. Moreover, the boundary
of Yα,σ inside of Ddα consists of the cell σ P BKα, Oα, and cells of the form Yα,τ where
τ ď σ in Kα. Every cell other than σ is mapped homeomorphically into Xα Ď X, and
σ is mapped homeomorphically onto its image by the definition of a weakly-regular cell
complex. Therefore ψα,σ is a homeomorphism of pairs, as required.

The cell-wise homeomorphism condition imposes a strict combinatorial structure on the closed-
ball decompositions tKαuαPPX . The crux of the combinatorial structure is the following lemma.

Lemma 1.2.13. Let Xα be a cell in a weakly regular cell structure with attaching map ϕα : Ddα Ñ Xα.
Let ϕ̊α :“ ϕα

∣∣
Dd

α denote the restriction of ϕα to the interior of the ball. The cell structure Kα can be
determined from ϕ̊α.

12



Proof. For each point x P BDdα , fix a path γx : r0, 1q Ñ Ddα such that limtÑ1 γxptq “ x. The
induced path ϕ̊α ˝ γx in Xα has a limit in Xα. For a boundary-cell Xτ Ď Xσ, set:

Sτ :“ tx P BDdα : lim
tÑ1

ϕ̊αpγxptqq P Xτu.

Since ϕ̊α is a surjection, Sτ is non-empty. Moreover, since ϕ̊α is the restriction of a cell-wise home-
omorphism, Sτ Ď BDdα can be decomposed into path-connected components, each of which is
homeomorphic to Xτ. Each connected component Y Ď Sτ is a cell in Kα. By a direct inductive
argument on cell-dimension, the attaching map ψ : Ddτ Ñ Y can be determined as well.

This lemma essentially enforces a weak uniqueness condition on weakly-regular cell structures.
Given a cell Xα in a weakly-regular cell structure, we cannot change the boundary-decomposition
Kα without also changing the interior of the attaching map ϕα. This forces the following combi-
natorial corollary.

Corollary 1.2.14. Let pXα,ϕα,KαqαPPX be a weakly-regular cell structure. Let BKα denote the cells
of Kα making up the boundary of the sphere BDdα . Let σ P BKα be a boundary cell, and suppose σ is
mapped homeomorphically onto the cell Xτ by ϕα. The closure σ Ď BDdα inherits a regular cell structure
from BKα, denoted Kσ. Moreover, the restriction ϕα

∣∣
σ
: σ Ñ Xτ factors as

σ Ddβ

Xβ

ψσ

ϕα

∣∣∣
σ

ϕβ

where ψσ is a regular cell homeomorphism from the cell structure on σ inherited from Kα, and Ddβ has
the cell structure of Kβ. Moreover, any such regular cell homeomorphism induces the same correspondence
at the level of cells.

Suppose we have a trio of cells Xα,Xβ,Xγ such that Xα Ď BXβ and Xβ Ď BXγ. Let σ P BKβ be a
cell mapped homeomorphically by ϕβ onto Xα, and τ P BKγ be a cell mapped homeomorphically
by ϕγ onto Xβ. By Corollary 1.2.14, there a regular cell-homeomorphism ψ : τ Ñ pDdβ ,Kβq. Let
ρ :“ ψ´1pσq denote the unique cell in τ that is mapped homeomorphically onto σ by ψ. We call
this cell ρ, which is homeomorphic to Xα, the cell in τ over σ.

1.2.2.1 Maps of weakly-regular cell complexes

We may generalize regular cell maps to act between weakly regular cell complexes.

13



Definition 1.2.15. Let pXα,ϕα,KαqαPPX and pYβ,ψβ, JβqβPPY be weakly-regular cell structures. A
weakly-regular cell map is a continuous function f : |X| Ñ |Y| such that the following conditions
hold.

(i) Each cell Xα of X is mapped by f surjectively onto a cell Yβ of Y, with dimpXαq ě dimpYβq.

(ii) There is a regular cell map f̂αβ : Ddα Ñ Ddβ such that the following diagram commutes:

Ddα Ddβ

Xα Yβ

f̂αβ

ϕα ψβ

f
∣∣∣
Xα

Weakly-regular cell maps have the following combinatorial property.

Proposition 1.2.16. Suppose f : |X| Ñ |Y| is a weakly regular cell map. If f maps Xα surjectively onto
Yβ, then fpXαq “ Yβ.

Proof. When f is a regular cell map of regular cell complexes, f has the desired property [52,
Proposition 1.1.3]. Therefore f̂αβ maps Ddα surjectively onto Ddβ , and fpXαq “ Yβ.

There are several classes of weakly-regular cell maps that will prove important for sheaf oper-
ations on Hilbert spaces. We outline them here.

Definition 1.2.17. Let f : pXα,ϕα,KαqαPPX Ñ pYβ,ψβ, JβqβPPY be a weakly regular cell map.

• f is a homeomorphism if the underlying map of topological spaces f : |X| Ñ |Y| is a
homeomorphism. Such a map is necessarily a cell-wise homeomorphism.

• f is an inclusion if f : |X| Ñ |Y| is injective. Such a map is necessarily injective on the cells
of X.

• For a cell β P PY , let the star of β, denoted stpβq, denote the collection of all cells Yγ of
Y for which Yβ is a face. The map f is a covering map if for each cell β, the preimage
f´1pstpβqq is a disjoint union of homeomorphic copies of stpβq, each of which is mapped
homeomorphically onto stpβq by f.

Remark 1.2.18. Each weakly-regular cellular map (resp. homeomorphism / injection / covering
map) f : |X| Ñ |Y| functorially induces a cellular map (resp. homeomorphism / injection /
covering map) Fcpfq : FcpXq Ñ FcpYq.
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1.2.2.2 Face categories

There are multiple ways to associate an order structure to the cells of a weakly-regular cell struc-
ture X. First, one can form the usual face poset, where α ď β if and only if Xα Ď Xβ. However,
this structure no longer uniquely specifies the topological space |X| up to homeomorphism. As a
simple example, consider the following poset, with height corresponding to cell-dimension.

2

1 1

0 0

While the poset specifies that the 0-cells and 1-cells are glued into a circle with two arcs, the
gluing of the 2-cell is ambiguous. The 2-cell could be glued so as to form a disk, or it could be
glued so as to wrap around the boundary circle n times for any n ě 2. This generates an infinite
family of non-homeomorphic topological spaces, each with the same face poset.

The essential problem captured by the previous example is that while the face poset can capture
when one cell of X is part of the boundary of another, it fails to capture the multiplicity. The face
poset cannot see how a cell Xβ is included as part of the image of the attaching map ϕα. To
capture non-boolean gluing data, we may instead associate the structure of an acyclic category
to the cell structure, with parallel morphisms capturing the multiplicity of the inclusion of a cell
in the boundary of another, and the compositional structure capturing the orientations. The key
to the construction is the boundary compatibility imposed by Corollary 1.2.14.

Definition 1.2.19 (Face category). Let pXα,ϕα,KαqαPPX be a weakly-regular cell structure for a
Hausdorff space X. The associated face category FcpXq consists of the following data.

• Objects. Each index α P PX is an object of FcpXq.

• Morphisms. For each α, the identity idα is the unique morphism in FcpXqpα,αq. For α ‰ β,
there is a unique morphism in FcpXqpα,βq for every cell σ in the boundary decomposition
BKβ that maps homeomorphically onto Xα. Equivalently,

FcpXqpα,βq “
␣

connected components of ϕ´1
β pXαq in BDdβ

(

.

• Composition. Identity maps are formal and compose in the necessary way. Given a pair of
composable morphisms α σ−Ñ β

τ−Ñ γ for distinct α,β,γ, the composition τ ˝ σ is defined to
be the cell ρ P Bτ over σ P BKβ, as guaranteed by Corollary 1.2.14.
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• Associativity. Consider a sequence of composable morphisms

Xα
σ−Ñ Xβ

τ−Ñ Xγ
ρ−Ñ Xδ ,

and pick regular cellular homeomorphisms ψτ : τ
–−Ñ Kβ, and ψρ : ρ

–−Ñ Kγ, and ψρ˝τ :

ρ ˝ τ
–−Ñ Kβ from Corollary 1.2.14. It is straightforwardly verified that the following diagram

commutes

ρ ˝ τ Kβ

τ

ψρ˝τ

ψρ

∣∣∣
ρ˝τ

ψτ

,

where we have identified Ddβ with its regular cell structure Kβ. It follows that pρ ˝ τq ˝σ “

ρ ˝ pτ ˝ σq, verifying associativity.

Example 1.2.20. We return to the torus and the Klein bottle, each parameterized with one vertex,
two edges, and a single face, as shown in Figure 2.

Figure 2: Non-regular cell structures for the torus (left) and Klein bottle (right)

Both of these cell structures are glued with the same multiplicities, and give rise to the same
labeled quiver of objects and morphisms:

f

e1 e2

v

E

W

N

S

γβ δα

L1
R1

L2
R2

However, the morphisms compose differently in the two face categories. For example, in the torus
(left), we see that δ “ W ˝ L1 “ S ˝ L2, while in the Klein bottle, we have that δ “ W ˝ L1 “ S ˝ R2.
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Hence the compositional structure of the face category encodes the orientation information of
how the top and bottom edges of the squares are glued together.

The face category FcpXq of a weakly-regular cell structure X is a natural generalization of the
usual face-poset of a regular cell structure. Indeed, when X is a regular cell complex, the face
category FcpXq is exactly the usual face poset. This follows from the fact that for a regular cell
complex, a cell Xα in the boundary of Xβ is included into the boundary in exactly one way. The
face category shares some of the same nice order properties as the face poset, such as having a
grading.

Proposition 1.2.21. The face category FcpXq of a weakly-regular cell structure is a GAC, with grading
given by cell dimension.

Proof. The morphism structure of FcpXq makes the category acyclic. The grading follows from
the fact that each cell of dimension n` 1 is attached along the closures of cells of dimension n.
Every morphism α Ñ β with dβ “ dα ` n factors through a cell of dimension dα ` j for each
1 ď j ď n´ 1. Hence every indecomposable morphism is a covering morphism, and P inherits a
grading.

The face category of a weakly-regular cell structure also generalizes some of the combinatorial
features of the face poset. For example, consider this variant of the diamond property.

Proposition 1.2.22. Let FcpXq be the face category of a weakly-regular cell structure pXα,ϕα,Kαqα. Let
α◁2 γ, and ρ : α Ñ γ. There are exactly two distinct composable pairs of covering morphisms in Covpρq.

Proof. The map ρ : α Ñ γ corresponds to a cell ρ P BKγ of dimension dα that is mapped by ϕγ
onto Xα. In the regular cell structure Kγ, there are exactly two cells τ1, τ2 such that α◁1 τj◁1 γ,
where we have identified γ with the open cell of dimension dγ in Kγ. We get a pair of maps
τj : βj Ñ γ, where Xβ1 and Xβ2 denote the (not necessarily distinct) cells of X that τ1 and τ2
are mapped to by ϕγ. Every pair of composable arrows through a cell of dimension dα ` 1 that
compose to ρmust include τ1 or τ2. For each τj, there is a unique cell σj P Kβj such that τjσj “ ρ,
proving the result.

Finally, we get a reconstruction result analogous to that of regular cell structures.

Theorem 1.2.23. Let pXα,ϕα,KαqαPPX be a weakly-regular cell structure for |X|. From the face category
FcpXq, we can reconstruct the topological space X up to homeomorphism.

Proof. We construct a topological space | FcpXq| inductively by dimension. Let Xn denote the
n-skeleton of X:

Xn :“
ď

α :dαďn

Xα .

17



At the nth step of the inductive construction, we will build a space | FcpXq|n and a homeomor-
phism Φn : | FcpXqn|

–−Ñ Xn.
As the base case, take | FcpXq|0 to be the discrete topological space on the set of points tα P

FcpXq : dα “ 0u, where dα is the rank of the object α P FcpXq. This space is trivially homeomor-
phic to X0 under the homeomorphism Φ0 : α ÞÑ Xα.

For the inductive step, suppose we have homeomorphism Φn : | FcpXq|n Ñ Xn. Fix an object
σ P FcpXq of rank dσ “ n` 1. First, we determine the regular cell structure Kσ on Dn`1. For each
distinct morphism p : α Ñ σ in FcpXq, there is a distinct cell of dimension dα in Kσ. Moreover,
given a pair of cells α p−Ñ σ and β q−Ñ σ, we have an incidence p ď q in Kσ if and only if there is
an s : α Ñ β such that q ˝ s “ p. Since Kσ is a regular cell structure, the decomposition Kσ for
Dn`1 can be reconstructed up to homeomorphism from the data of this poset [52, 86]. Without
loss of generality, suppose we have reconstructed Kσ exactly.

Pick a regular cell map fσ : BDn`1 Ñ | FcpXq|n that maps each cell p : α Ñ σ in BKσ home-
omorphically onto the cell | FcpXq|α Ď | FcpXq|. Such a map must exist by the definition of a
weakly-regular cell complex. Consider the following commutative diagram in the category Top :

BDn`1 Xn

BDn`1 | FcpXq|n

Dn`1 Xn YXσ

Dn`1 | FcpXq|n Y |σ|

ϕσ

“

fσ

Φn

{

“ {

The front and back faces of the cube are pushout squares. Since three labeled arrows from the
front face to the back face are homeomorphisms, there is an induced homeomorphism | FcpXq|nY

|σ| Ñ Xn YXσ. Repeating this process for all cells of dimension n` 1 allows us to extend Φn to
a homeomorphism Φn`1 : | FcpXq|n`1 –−Ñ Xn`1.

Remark 1.2.24. The crux of this argument is that the compositional structure of the face category
encodes all the gluing information of the attaching maps, such as the "orientation" of the gluing.
For example, when considering the torus and the Klein bottle (Example 1.2.20), the constructions
diverge exactly when the two-cell is glued in with different orientations along the southern edge.
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1.2.2.3 An exit path perspective

We have constructed the face category of a weakly regular cell complex in a combinatorial manner,
with morphisms capturing inclusions of cells into the boundaries of other cells. We may instead
link the face category to the theory of exit path categories of stratified spaces. In short, an exit path
in a stratified space is a path γ that only moves from cells of lower dimension to cells of higher
dimension. The space of exit paths, up to homotopies which preserve the exit-path property, yield
a category of exit paths. The exit path categories (and their opposite entrance path categories) are
prevalent in discrete Morse theory [75, 93], and are invaluable for representations of constructible
sheaves and stacks on stratified spaces [33, 81, 83] following the work of Treumann [118].

Definition 1.2.25 (Tagged weakly-regular cell structure). Let X “ pXα,ϕα,Kαqα be a weakly-
regular cell structure. A tagging for X is the choice of a point xα P Xα for each index α. We call
the collection pXα, xα,ϕα,Kαqα a tagged weakly-regular cell complex.

Definition 1.2.26 (Discrete exit path). Let X “ pXα, xα,ϕα,Kαqα be a tagged weakly-regular cell
structure. A discrete exit path in X is a Moore path γ : r0, T s Ñ |X| satisfying the following
conditions.

(i) γp0q “ xα for some α.

(ii) γpTq “ xβ for some β.

(iii) The function t ÞÑ dimpγptqq is weakly increasing, where dimpxq is the dimension of the
unique cell of X containing x.

Remark 1.2.27. The "discrete" qualifier is not meant to imply that anything about the path γ is
discrete. Instead, we are limiting the endpoints of our paths to the discrete set of points txαuα.
This is in contrast to the usual definition of an exit path in a stratified space, which can begin
and end at any point.

Definition 1.2.28 (exit path homotopy). Let γ : r0, T0s Ñ |X| and η : r0, T1s Ñ |X| be exit paths
from xα to xβ in a tagged weakly-regular cell structure. An exit path homotopy H : γ ñ η from
γ to η is a continuous map H : r0, 1s ˆ r0, 8q Ñ |X| that satisfies the following conditions.

(i) Hp0, tq “ γpt^ T0q for all t ě 0.

(ii) Hp1, tq “ ηpt^ T1q for all t ě 0.

(iii) Hps, ´q : r0, 8q Ñ |X| is an eventually-constant exit path for all s P r0, 1s.
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That is, H is a fixed-endpoint Moore-homotopy from γ to η such that every slice is an exit path.
Given a pair of discrete exit paths γ,η with the same endpoints, if there is an exit path ho-

motopy H : γ ñ η, we say that γ and η are exit path homotopic, and write γ „ η. This is an
equivalence relation, and we denote the equivalence class of γ by rγs.

Definition 1.2.29 (Discrete exit path category). Let X “ pXα, xα,ϕα,Kαqα be a tagged weakly-
regular cell structure. The discrete exit path category of X, denoted DExitX, is the category
consisting of the following data.

• Objects. The objects of DExitX are the tags txαuα.

• Morphisms. The set of morphisms from xα to xβ is the set of exit path homotopy classes
of discrete exit paths from xα to xβ. That is,

DExitXpxα, xβq “
␣

rγs : γ is a discrete exit path from xα to xβ
(

.

• Composition. Given xα
rγs−−Ñ xβ

rηs−−Ñ xδ, the composition rηs ˝ rγs is given by rη ˚ γs, where
η ˚ γ denotes the usual concatenation of Moore paths.

This is easily seen to be a valid category. Moreover, since dimpγptqq must be weakly increasing
in t and each cell Xα is contractible, DExitX is an acyclic category. In fact, it’s a GAC.

Proposition 1.2.30. DExitX is a graded acyclic category, graded by rpxαq “ dα.

Proof. To confirm that DExitX is graded by dimension, we must show that every morphism
rγs : xα Ñ xδ with dδ “ dα `n factors as

xα xβ1 ¨ ¨ ¨ xβn´1
xδ

rγ1s

rγs

rγ2s rγn´1s rγns
,

where dβj “ dα ` j. If n “ 1, this vacuous, so suppose n ě 2.
The representative discrete exit path γ : r0, T s Ñ |X| from xα to xδ lifts to a unique path γ̂

in Ddδ such that ϕδpγ̂ptqq “ γptq. For each cell σ P Kδ Let Xζpσq denote the cell of X onto
which σ is mapped homeomorphically. Tag each σ P Kδ with yσ :“ ϕ´1

δ pxζpσqq. The path γ̂ is
a discrete exit path with respect to this tagged weakly-regular cell structure. Moreover, inside
the ball Ddδ , the path γ̂ is exit path homotopic to a discrete exit path η̂ which passes through
the tags yσ1 , . . . ,yσn´1

in order. Pushing forward by ϕδ yields a discrete exit path η „ γ in X
that passes through xβj :“ xζpσjq. Taking ηj to be the sub-path from xβj´1 to xβj , we find that
rγs “ rηns ˝ rηn´1s ˝ ¨ ¨ ¨ ˝ rη1s.
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Theorem 1.2.31. Let X “ pXα,ϕα,Kαqα be a weakly-regular cell structure equipped with a tagging
txαuα. There is an isomorphism of categories:

DExitX – FcpXq .

Proof. The isomorphism Ψ : FcpXq Ñ DExitX acts on objects and morphisms as follows.

• Objects. Ψpαq :“ xα.

• Morphisms. For an identity morphism idα, take Ψpidαq to be the exit path homotopy class
of a constant path on xα. For a non-identity morphism σ : α Ñ β, take the straight-line
path γ̂σ : r0, 1s Ñ Ddβ from ϕ´1

β pxαq P σ Ď BDdβ to ϕ´1
β pxβq P Ddβ . The map γσptq :“

ϕβpγ̂σptqq is a discrete exit path from xα to xβ. We take Ψpσq :“ rγσs.

To verify that Ψ is a functor, we may essentially repeat the argument of Proposition 1.2.30. Since
the domain and codomain are graded, it suffices to check that Ψpτ ˝ σq “ Ψpτq ˝ Ψpσq when
α
σ−Ñ β

τ−Ñ δ are a composable pair of covering morphisms. The path γσ ˚ γτ lifts a unique path
η̂ in Kδ that follows straight-line segments ϕ´1

δ pxαq ⇝ x̂β ⇝ ϕ´1
δ pxδq, where x̂δ :“ ϕ´1

δ pxδq,
and x̂α and x̂ denote the unique points in ϕ´1

δ pxαq X pτ ˝ σq and ϕ´1
δ pxβq X τ respectively. The

discrete exit path η̂ with respect to the corresponding tagging on Kδ is exit path homotopic to
the straight-line path γ̂τ˝σ : x̂α ⇝ x̂δ. The pushforward of this path by ϕδ is exit path homotopic
to γσ ˚ γτ, and is exactly the path γτ˝σ. This proves associativity.
Ψ is clearly a bijection on objects, but we still must verify that Ψ is full and faithful. Since FcpXq

and DExitX are graded, it suffices to verify Ψ : FcpXqpα,βq Ñ DExitXpxα, xβq is a bijection when
β covers α. This follows from how ϕ´1

β pxαq picks out a distinct point in every cell of Kβ that
is mapped to Xα by ϕβ. Two discrete exit paths with respect to the induced tagging on Kδ are
exit path homotopic if and only if they begin and end at the same point. This easily yields a
one-to-one correspondence FcpXqpα,βq – DExitXpxα, xβq.

Remark 1.2.32. This theorem also shows that the choice of the tagging txα P Xαuα does not
impact the categorical structure of DExitX. Hence, we may safely discuss the exit path category
on an un-tagged weakly-regular cell structure without ambiguity.

It will also be useful to define discrete entrance paths on a tagged weakly-regular cell structure,
and the discrete entrance path category. A Moore path γ : r0, T s Ñ |X| is a discrete entrance path
if and only if the reversed path γrevptq :“ γpT ´ tq is a discrete exit path. Hence, the quantity
dimpγptqq is weakly decreasing in t instead of increasing. Two entrance paths γ and η are entrance
path homotopic if there is a fixed-endpoint Moore homotopy H : γ ñ η that is an entrance
path on each slice. Analogously to the discrete exit path category, the discrete entrance path
category DEntX again has entrance path homotopy classes of discrete entrance paths for objects,
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with composition given by rγs ˝ rηs “ rη ˚ γs. By identifying γop “ γrev, there is a canonical
isomorphism DEntX – DExitop

X .
While the entrance path category DEntX is still an acyclic category, it is not necessarily graded.

In particular, if X has cells of every dimension, then DEntX will have no minimal objects with
respect to the underlying poset structure, and will fail to have a grading.

1.3 signed incidence structures

In order to add and subtract maps along morphisms in a GAC in a manner yielding the correct
cancellations for cohomology, we need to assign parities to the covering morphisms. This assign-
ment is a mild generalization of the signed incidence relation on a poset [33, 45, 52, 54], which
we now briefly review.

Definition 1.3.1 (signed incidence relation on a poset). A signed incidence relation on a graded
poset pP, rq is a map r´ : ´s : P ˆ P Ñ t´1, 0, 1u that satisfies the following conditions.

(i) rx : ys ‰ 0 if and only if y covers x.

(ii) For any x ď z,
ř

yPPrx : ysry : zs “ 0.

(iii) For any e P P of rank 1, there are exactly two cells v0, v1 covered by e, and rv0 : es “ ´rv1 : es.

Remark 1.3.2. We make a few remarks on this definition.

1. Condition (i) ensures that the data of a signed incidence relation is determined by how it
acts on covering pairs x◁1 y.

2. Condition (ii) is capturing information about intervals of length 2 in P. The specified sum
ř

zPPrx : zsrz : ys is trivially equal to 0 whenever rpzq ‰ rpxq ` 2. Moreover, when rpzq “

rpxq ` 2, the sum reduces to:

ÿ

yPP

rx : ysry : zs “
ÿ

y :x◁1y◁1z

rx : ysry : zs .

3. Condition (iii) is not always included in the definition of a signed incidence relation. Follow-
ing [54], we adopt this convention of opposite parities on one-cells to eventually enforce a
correspondence between global sections of cellular sheaves and the kernel of a coboundary
operator.

Our first task is to generalize this definition to a graded acyclic category. Incidence algebras for
acyclic categories have been studied [99], but without a clear analogue to the signed incidence
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relation above. However, the observation that a morphisms in an acyclic category plays the role of
an interval in a poset leads to a suitable generalization by changing the domain of the incidence
structure from pairs of objects to arrows in the acyclic category.

Definition 1.3.3 (signed incidence structure on a GAC). A signed incidence structure on a
graded acyclic category pP, rq is a map ϵ : MorpPq Ñ t´1, 0, 1u that satisfies the following condi-
tions.

(i) Supported on covering morphisms. ϵpx
f−Ñ yq ‰ 0 if and only if x◁1 y.

(ii) Coboundary condition. For any x ď z and h : x Ñ z,

ÿ

g˝f“h

ϵpfqϵpgq “ 0

where the sum ranges over pairs of composable arrows x f−Ñ ‚
g−Ñ z such that g ˝ f “ h.

(iii) 1-cell condition. For any e P P of rank 1, there are exactly two covering morphisms f0, f1
with codomain e, and ϵpf0q “ ´ϵpf1q.

Remark 1.3.4. As in the case of signed incidence structures on posets, the coboundary condi-
tion reduces to a statement about "intervals" of length 2. ϵ : MorpPq Ñ t´1, 0, 1u satisfies the
coboundary condition if and only if for every pair x◁2 y and map h : x Ñ y, the sum

ÿ

pf,gqPCovphq

ϵpfqϵpgq “ 0 .

In order for the sum in the coboundary condition to exist, Covphq must be finite for every such
h.

In the event that the graded acyclic category P is itself a poset, a signed incidence structure on
P induces a signed incidence relation under the correspondence:

rx : ys “

$

’

&

’

%

ϵpx Ñ yq if Ppx,yq has a unique inhabitant

0 else.
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Not every GAC admits a signed incidence structure. To witness this failure, one may look to
the many posets that fail to admit signed incidence relations, such as the following poset graded
by height.

‚

‚ ‚ ‚

‚

This poset does not admit a signed incidence relation, as there are three distinct composable pairs
of morphisms from the bottom object to the top object.

The face posets of regular cell structures form a broad class of posets that admit signed inci-
dence relations [33, Section 6.1.1]. Similarly, the face categories of weakly-regular cell structures
admit signed incidence structures. We now give an explicit algorithm for finding a signed inci-
dence structure on FcpXq for a weakly-regular cell structure X.

Algorithm 1.3.5. Let X “ pXα,ϕα,Kαqα be a weakly-regular cell structure with face category
FcpXq. Construct ϵ : MorpFcpxqq Ñ t´1, 0, 1u as follows.

1. For each cell Xα of dimension dα ě 1, fix a homeomorphismDdα – Rdα , and an orientation
for Rdα in the form of an ordered basis tb1, . . . ,bdαu. This data induces an orientation on
Ddα , and consequently on Xα – Ddα when pushed forward by ϕα

∣∣
Ddα

.

2. If Xα is a 1-cell, the orientation on D1 corresponds to a direction for the edge ‚ −Ñ ‚.
Suppose the source vertex is attached to v0 and the target vertex to v1 by ϕα. Then the
covering morphisms v0 Ñ α and v1 Ñ α are assigned ´1 and `1 respectively.

3. If Xα is a dα-cell for dα ě 2, each cell σ P BKα of dimension dσ “ dα ´ 1 inherits an
orientation from the orientation tb1, . . . ,bdαu. In particular, we adopt the outward normal
convention [80]. The attaching map ϕα maps σ homeomorphically onto a cell Xβ. If the
orientation on σ induced from the orientation of Ddα , when pushed forward by ϕα, agrees
with the orientation on Xβ fromDdβ , assign to the covering morphism σ the value ϵpσq :“ 1.
If these orientation disagree, instead assign ϵpσq “ ´1.

4. All other morphisms τ are assigned ϵpτq “ 0.

At the end of the process, we have a signed incidence structure.

Proposition 1.3.6. The assignment ϵ : MorpFcpXqq Ñ t´1, 0, 1u constructed in Algorithm 1.3.5 is a
signed incidence structure.
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Proof. The resulting assignment ϵ is clearly supported on covering morphisms, and satisfies the
1-cell condition. We need to check the coboundary condition.

For a given cell Xα, let Opαq denote the chosen orientation on Xα. For a boundary cell σ P BKα

which is mapped homeomorphically onto Xβ by ϕα, let Oσpβq denote the orientation induced
on Xβ by Xα through the cell σ. Finally, given a pair of orientations O1 and O2 on the same cell,
write:

EpO1,O2q “

$

’

&

’

%

1 if the orientations agree

´1 else.

Consider a pair of cells Xα and Xγ with dγ “ dα ` 2, and fix a map ρ : α Ñ γ in FcpXq. By
Proposition 1.2.22, there are exactly two distinct composable pairs of arrows α

σj−Ñ βj
τj−Ñ γ with

α◁1 βj◁1 γ and τj ˝ σj “ ρ, j “ 1, 2. To prove that ϵ is a signed incidence structure, it suffices to
show that ϵpτ1qϵpσ1q “ ´ϵpτ2qϵpσ2q. The desired equation may be re-written as

E
`

Oτ1pβ1q,Opβ1q
˘

E
`

Oσ1pαq,Opαq
˘

“ ´E
`

Oτ2pβ2q,Opβ2q
˘

E
`

Oσ2pαq,Opαq
˘

.

Notice that if we flip the orientation Opβ1q to an opposite orientation, then we also flip the orien-
tation Oσ1pαq. Consequently, both terms in the left hand side would change sign, leaving the left
hand side unchanged. The left hand side is therefore independent of Opβ1q, and we may assume
without loss of generality that E

`

Oτ1pβ1q,Opβ1q
˘

“ 1. Similarly, we may show the right hand
side is independent of Opβ2q, and assume without loss of generality that E

`

Oτ2pβ2q,Opβ2q
˘

“ 1.
It now suffices to show that

E
`

Oσ1pαq,Opαq
˘

“ ´E
`

Oσ2pαq,Opαq
˘

.

But this follows easily from the fact β1 and β2 lie on opposite sides of α inside of Kγ. Since both
Xβ1 and Xβ2 have orientations that agree with that of Xγ, Hence σ1 and σ2 must induce opposite
orientations on Xα, proving the desired equality.

1.4 cellular sheaves

With graded acyclic categories and signed incidence structures in hand, we are finally able to
define cellular sheaves.

Definition 1.4.1. Let P be a levelwise-finite graded acyclic category that admits a signed incidence
structure. A cellular sheaf on P is a functor F : P Ñ D for some data category D. We call the
D-object Fpxq P D the stalk over x for each object x P P. Meanwhile the D-morphism Ff :“ Fpx

f−Ñ
yq : Fpxq Ñ Fpyq is called the restriction map over f : x Ñ y.
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When P is a poset, the at-most-uniquely inhabited homsets enforce a friendly composition
property for the restriction maps. Namely, if x ď y ď z in the poset P, then Fyďz ˝ Fxďy “ Fxďz.
This follows from the uniqueness of morphisms in homsets.

Equivalently, cellular sheaves can be defined in terms of cells and covering-morphisms exclu-
sively. That is, a cellular sheaf on P is a choice of an object Fpxq P D for each x P P, and a
D-morphism Ff : Fpxq Ñ Fpyq whenever f : x Ñ y is a covering morphism in P. From this
information, all other restriction maps can be determined by composing chains of covering mor-
phisms.

Definition 1.4.2. Let F,G : P Ñ D be cellular sheaves defined on the same acyclic category P. A
sheaf morphism ϕ : F Ñ G is a natural transformation.

With sheaf morphisms, we may form a category of cellular sheaves ShvpP;Dq :“ rP,As.

1.4.1 On the definition of cellular sheaves

There are a variety of different definitions of "cellular sheaf" in the literature. The most common
definitions either take the domain of a cellular sheaf F to always be the face poset of a regular cell
structure X [30, 31, 45, 52, 54, 55, 102], or allow the domain to be a more-or-less arbitrary poset
[20, 33, 40, 66]. The first definition has a generally more topological flavor. By restricting to the
face posets of regular cell structures, this definition keeps cellular sheaves closer to their origins
in algebraic topology. Sheaves have been used to study topological spaces with great success
since Leray’s work as a prisoner of war in Nazi Germany [89]. Straying too far afield, especially
when unnecessary, might disconnect cellular sheaves from their natural place in the history of
mathematical thought. Moreover, the poset inherits a natural grading by dimension and a signed
incidence relation via orientations, as discussed in Section 1.3. This additional structure allows
for a rich cohomology theory, as well as the introduction of dynamics and spectral theory. Finally,
face posets of regular cell complexes are better behaved than general graded partially ordered
sets that admit signed incidence structures, and cellular sheaves defined on them will be better
behaved as well.

The second definition, on the other hand, is more combinatorial in nature. While still topolog-
ical, a cellular sheaf on an arbitrary poset allows one to extend certain aspects of the theory of
cellular sheaves, most notably those that do not require an appeal to the graded structure. This
comes at the expense of the clear connection to topological spaces and cohomology. Adjectives
can be added to get access to those tools as needed and desired.

Our definition of a cellular sheaf in this thesis deviates substantially from both of the preceding
definitions. On the topological v. combinatorial divide, we aim to strike a balance. When our
graded acyclic category is a poset, we are more-or-less exactly restricting to the class of posets
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in which we can discuss cohomology and Laplacian dynamics. However, by divorcing cellular
sheaves from those posets that specifically come from the faces of regular cell complexes, we are
treating cellular sheaves as a fundamentally combinatorial object.

This choice is further justified by our focus on network sheaves—cellular sheaves defined over
graphs. While graphs can be viewed as cell structures, it is more natural to think of of them
as graded posets directly; they are combinatorial—not topological—structures. For applications
in applied mathematics, the cell structure perspective requires additional conceptual machinery
that may obscure the underlying combinatorial nature.

More strikingly, our definition of a cellular sheaf generalizes from posets to acyclic categories.
This generalization serves a concrete purpose. When looking at network sheaves, by allowing for
multiple morphisms between objects, we are able to accommodate graphs with self-loops. Such
graphs sometimes admit meaningful interpretations in applications of cellular sheaves. While
graphs with self loops can be studied in the existing framework of cellular sheaf theory easily
through subdivision or ad-hoc methods, defining cellular sheaves over acyclic categories provides
a natural systematic framework for doing so. The fact that many results about cellular sheaves
on posets can be lifted to a more general acyclic categorical setting is an additional benefit.

1.4.2 Cellular sheaves are sheaves

Definition 1.4.1 may initially appear disconnected from classical sheaf theory. There are at least
three apparent issues.

1. No topology is explicitly present in the definition—classical nor Grothendieck.

2. A sheaf on a category C is a contravariant functor F : Cop Ñ D that satisfies the sheaf
condition. However, a cellular sheaf is a functor with domain P, not Pop as one would
expect.

3. The sheaf condition is notably absent from this definition.

In [33, Section 4.2], Curry cleanly resolved all three of these issues for cellular sheaves on
posets through the use of the (upper) Alexandrov topology 2 [4]. Given a partially ordered set
(or more generally a preordered set) P, the order structure induces a topology on P whose open
sets are exactly upward-closed sets with respect to the order. That is, U Ď P is open if and only if
whenever x ď y and x P U, then y P U as well. This topology has a basis given by the collection
of upsets Ò x :“ ty P P : y ě xu for all x P P. This topology cleanly resolves all three apparent
issues:

2 The "upper" prefix is to distinguish from the analogously defined lower Alexandrov topology, whose open sets are
downard-closed sets. [82]
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1. The Alexandrov topology clarifies the topological structure.

2. The open set structure on the Alexandrov topology on a poset P is order-reversing with
respect to the partial order relation. That is, x ď y =ñ pÒ xq Ě pÒ yq. Given that a sheaf
on a topological space X is a functor F : OpenpXqop Ñ D for some data category, this
order-reversing property explains the absence of the opposite category construction.

3. Finally, assuming our data category D has enough limits and colimits, the functor category
rP,Ds, or equivalently the category of D-valued cellular sheaves on P, is categorically equiv-
alent to the category ShvpP,Dq of D valued sheaves on P with respect to the Alexandrov
topology [33, Theorem 4.2.10]. Since these sheaves must satisfy the sheaf condition, so do
the cellular sheaves by pushing through the equivalence.

Remark 1.4.3. There are other natural topologies one can put on a posetal category. Such topolo-
gies and the sheaves on them have been studied by Lindenhovius [82] and Hemelaer [58].

Unfortunately, the Alexandrov topology fails to allow a cellular sheaf on an acyclic category P

to be viewed as an honest sheaf on a topological space. By definition, a presheaf on a topological
space X is a contravariant functor on the category of open sets OpenpXq, which is necessarily a
thin category. Hence there is no way to accommodate multiple parallel arrows between objects
in FcpXq.

This situation can be partially rectified through a Grothendieck topology. When a category C

is endowed the indiscrete Grothendieck topology (also known as the chaotic topology), every
contravariant functor F : Cop Ñ D is a sheaf on C. This gives us a trivial way to view a cellular
sheaf as a sheaf.

Proposition 1.4.4. Let F : P Ñ D be a cellular sheaf on an acyclic category P. F is a sheaf on Pop

topologized by the indiscrete topology.

While technically a sheaf, this is not a satisfying resolution. The cellular sheaf on P is a sheaf
on Pop, not P. However, it is worth remarking that this really is no different than the Alexandrov
topology on a poset. Given a poset P, the indiscrete topology on Pop assigns a unique covering
sieve to each object x P Pop given by the overcategory Pop{x. This exactly corresponds to the set
of points ty P P : x ď yu with respect to the ordering on P — a basic open set in the upper
Alexandrov topology. Hence while it is less conceptually and linguistically pleasing for a cellular
sheaf on an acyclic category P to be a presheaf on Pop, it is the natural generalization.

Remark 1.4.5. When P :“ FcpXq is the face category of a weakly-regular cell complex X, we can
view a cellular sheaf F : FcpXq Ñ P in a more satisfying way. Through the identifications FcpXq –

DExitX and DEntX – DExitop
X , as discussed in Section 1.2.2.3, a cellular sheaf on FcpXq is a sheaf
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on the discrete entrance path category DEntX with the indiscrete topology. This interpretation
further links cellular sheaves to constructible sheaves, a connection first explored by Shepard
[112].

1.4.3 Sections of cellular sheaves

The natural interpretation of a cellular sheaf F : P Ñ D is as a data structure. This is especially
clear when the data category D has objects that are sets with certain additional structure, and
morphisms that are structure preserving set maps (or more generally, when D is a concrete
category). Objects in the data category D are interpreted as different spaces in which data can
live. For each object x P P, the stalk Fpxq P D over x represents a choice of a space in which
data can live. The restriction maps, on the other hand, provide local consistency conditions that
may-or-may-not be satisfied by choices of data living over each point in P. A consistent selection
is a section.

Definition 1.4.6. Let F : P Ñ D be a cellular sheaf. Let Z Ď P be a sub-category. The space of
sections over Z, denoted ΓpF;Zq, is the limit

ΓpF;Zq :“ limF
∣∣
Z

in the category D, when it exists. When Z “ P, we call the sections ΓpFq :“ ΓpF;Pq the global
sections of F.

When the objects of D can be thought of as structured sets, such as vector spaces or R-modules,
spaces of sections take on a definite meaning. Given a cellular sheaf F : P Ñ D, and a subcategory
Z Ď P, each point x P ΓpF;Zq can be thought of as a locally consistent choice of data living over
each stalk σ P ObpZq. In particular, for each map f : σ Ñ τ in Z, the corresponding restriction
map Ff : Fpσq Ñ Fpτq must map xσ to xτ.

1.4.4 Sheaf operations

When the data category D admits certain categorical operations like biproducts, tensor prod-
ucts, and pullbacks (among others), we obtain corresponding operations on cellular sheaves;
these operations allow us to build new sheaves out of old ones. In particular, all six functors of
Grothendieck’s six functor formalism can be applied to cellular sheaves.

These operations generally lift pointwise from the data category to the sheaf category. For
instance, given cellular sheaves F1,F2 : P Ñ D, their direct sum F1 ‘ F2 assigns to each cell
σ the direct sum F1pσq ‘ F2, with restriction maps acting componentwise. Similarly, pullback
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operations allow us to transfer sheaves across cellular maps ϕ : P Ñ Q while pushforward
operations aggregate local data along such maps. The tensor product enables the construction
of sheaves modeling coupled systems, where interactions between different data types must be
captured within the sheaf structure. Access to these sheaf-building constructions is part of what
makes the theory of cellular sheaves such a flexible framework for describing networked systems
in applied mathematics.

The details of these operations for the adjoint pairs (pullback % pushforward) and (tensor %

hom), as well as a few other operations like direct sums, are described in more detail for cellular
sheaves of Hilbert spaces in Section 4.5. For more details on the general construction, as well as
the missing "extraordinary" adjoint pair pp´q! % p´q!q, see [33].

1.4.5 Cohomology

Let F : P Ñ A be a cellular sheaf valued in an abelian category A. In Definition 1.4.1 of a cellular
sheaf, the requirement that the acyclic category P admit a grading r : P Ñ N and a signed
incidence structure ϵ : MorpPq Ñ t´1, 0, 1u is exactly the structure necessary to define a cochain
complex associated to F.

Definition 1.4.7 (Associated cochain complex). The cochain complex associated to a cellular
sheaf F : P Ñ A is the cochain complex

`

C‚pP,Fq , δ‚
˘

:“ C0pP;Fq
δ0−Ñ C1pP;Fq

δ1−Ñ C2pP;Fq
δ3−Ñ ¨ ¨ ¨

with k-cochains CkpP;Fq and k-coboundary maps δk : CkpP;Fq Ñ Ck`1pP;Fq defined by:

CkpP;Fq :“
à

rpσq“k

Fpσq ,

pδkxqτ :“
ÿ

σ◁1τ
f:σÑτ

ϵpfqFfpxσq .

The sum in the definition of δk is understood as being taken over covering morphisms into τ,
and Ff :“ Fpfq is a shorthand for the image of the morphism f under the functor F.

Proposition 1.4.8.
`

C‚pP,Fq , δ‚
˘

is a cochain complex.
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Proof. This follows straightforwardly from the coboundary condition in the definition of a signed
incidence structure. Suppose that x P CkpP;Fq is supported only on Fpσq for a single point σ of
grade k. One may compute:

pδk`1δkxqτ “
ÿ

χ◁1τ
g:χÑτ

ϵpgqFgppδkxqχq

“
ÿ

χ◁1τ
g:χÑτ

Fg

¨

˚

˝
ϵpgq

ÿ

σ◁1χ
f:σÑχ

ϵpfqFfpxσq

˛

‹

‚

“
ÿ

χ◁1τ
g:χÑτ

ÿ

σ◁1χ
f:σÑχ

ϵpgqϵpfqFg˝fpxσq

“
ÿ

σ◁2τ
h:σÑτ

ÿ

pf,gqPCovphq

ϵpgqϵpfqFhpxσq

“ 0.

Thus δk`1 ˝ δk “ 0, and
`

C‚pP,Fq , δ‚
˘

is a cochain complex.

Remark 1.4.9. This argument does not require that the cellular sheaf be valued in an abelian
category. If A is merely additive, every cellular sheaf F : P Ñ A on a finite graded acyclic
category will have an associated cochain complex.

Definition 1.4.10 (Cellular sheaf cohomology). Let F : P Ñ A be a cellular sheaf valued in an
abelian category A, with associated cochain complex

`

C‚pP,Fq , δ‚
˘

. The kth sheaf cohomology
of P with coefficients in F is the family of quotients

H‚pP;Fq :“ kerpδk`1q{impδkq ,

with the convention that impδ´1q :“ 0.

Remark 1.4.11. It is something of a misnomer to say "the" associated cochain complex and "the"
sheaf cohomology of a cellular sheaf. The definition of the coboundary map δ‚ ultimately de-
pends on a non-unique choice of a signed incidence structure ϵ on the GAC P; different choices
of ϵ lead to different definitions of δ. However, by a straightforward sign-flipping argument, it
can be seen that the image and kernel of each coboundary map δk is invariant under different
choices of signed incidence structure ϵ. Hence for most purposes (including cohomology) we
may leave the specific choice of ϵ unspecified without creating ambiguity.

Remark 1.4.12. The 0th cohomology, H0pP;Fq is straightforward to interpret; H0pP;Fq is isomor-
phic to the to the space of global sections of F, when identified with a subspace of C0pP;Fq.
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Higher cohomology can be interpreted as spaces of obstructions. We will describe this cohomol-
ogy and its interpretation for cellular sheaves valued in the category of Hilbert spaces in more
detail in Section 4.6. For more details on cellular sheaf cohomology in general, and its equivalence
to the usual definition of sheaf cohomology in terms of derived categories, see [33].

1.4.6 Cellular cosheaves

As with everything [121], cellular sheaves admit a dual notion of cellular cosheaves by turning all
the restriction maps around.

Definition 1.4.13. Let P be a graded acyclic category that admits a signed incidence structure. A
cellular cosheaf on P is a contravariant functor F : Pop Ñ D for some data category D. We call
the D-object Fpσq P D the costalk over σ for each σ P P. The D-morphism Ff :“ Fpx

f−Ñ yq :

Fpyq Ñ Fpxq is called the extension map over f : x Ñ y.

When G is a multigraph (with self-loops allowed), viewed as a weakly-regular cell structure, a
VectF-valued cellular cosheaf on G is exactly a sheaf on G in the sense of Friedman [42]. These
sheaves on graphs were used by Friedman to prove the Hanna Neumann conjecture on finitely
generated subgroups of free groups.

All the preceding constructions on cellular sheaves may themselves be dualized to cellular
cosheaves. Sections become colimits of subcategories, the sheaf operators adapt easily, the asso-
ciated cochain complex becomes an associated chain complex, and sheaf cohomology becomes
cosheaf homology. While cellular cosheaves valued in abelian categories are somewhat harder
to grasp than their cellular sheaf counterparts, cosheaves have proved useful for a variety of do-
mains beyond the Hanna Neumann conjecture such as graphic statics [30, 31]. While the focus of
this thesis is exclusively cellular sheaves of Hilbert spaces, we would be remiss not to mention
this beautiful dual theory.
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This chapter provides a concise review of the functional analytic foundations necessary for our
subsequent development of cellular sheaves valued in Hilbert spaces. While the classical theory
of weighted cellular sheaves operates within finite-dimensional vector spaces, the extension to
infinite-dimensional Hilbert spaces requires careful attention to the underlying operator-theoretic
machinery. We present these prerequisites in a self-contained manner, emphasizing those aspects
most relevant to our later constructions. Proofs are largely omitted, but can be found in standard
texts such as [38, 73, 100].

2.1 banach spaces

Perhaps the most fundamental structure in classical functional analysis is the Banach space. A
Banach space is a complete normed vector space: a vector space X equipped with a norm } ¨ } such
that every Cauchy sequence in X converges. This structure serves as a powerful generalization
of the finite dimensional Rn and Cn, and serves as the backbone of functional analysis. Unsur-
prisingly, prototypical examples of Banach spaces are Rn and Cn with their standard Euclidean
norms, but the real utility emerges when working with infinite-dimensional spaces.

Definition 2.1.1. Let k be either R or C. A k-Banach space is a normed k-vector space pX, } ¨ }q

that is complete with respect to the topology on X induced by } ¨ }.

Example 2.1.2. The following are examples of real Banach spaces.

1. The space Cra,bs of continuous functions f : ra,bs Ñ R with the sup-norm }f}8 :“

supt|fpxq| : x P ra,bsu.

2. For each p P r0, 8s, the space ℓppNq of sequences pxnq with finite p-norm }pxnq}p :“

p
ř

nPN |xn|pq
1{p.

3. The Lebesgue spaces Lpra,bs of Lebesgue measurable functions f : ra,bs Ñ R (modulo

almost-everywhere agreement) with finite p-norm }f}p “

´

şb
a |f|pdx

¯1{p
.

4. More generally, the spaces LppΩ,F,µ ; Rnq of F-measurable functions f : Ω Ñ Rn (modulo
almost-everywhere) with finite p-norm, where pΩ,F,µq is a measure space.
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These real Banach spaces have complex Banach analogues. Most results we discuss will hold
for both real and complex Banach spaces.

Remark 2.1.3. A linear subspace Y Ď X of a Banach space X need not be a Banach space. While
such a subspace inherits a norm by restriction, Y may not be complete with with respect to the
norm, such as when Y is not closed in X. This is the only way a subspace can fail to be a Banach
space.

Proposition 2.1.4. Let X be a Banach space. A linear subspace Y Ď X is a Banach space if and only if Y
is topologically closed in X.

2.2 hilbert spaces

Hilbert spaces form a special class of Banach spaces with well behaved geometry. In short, Hilbert
spaces are Banach spaces in which angles between vectors can be defined. Consequently, Hilbert
spaces admit stronger theorems and more geometric arguments that aren’t available in a generic
Banach space.

Definition 2.2.1. A k-Banach space X is a k-Hilbert space if the Banach space norm satisfies the
parallelogram identity

}x` y}2 ` }x´ y}2 “ 2}x}2 ` 2}y}2.

Remark 2.2.2. This is not the most common definition of a Hilbert space. Usually, a Hilbert space
is defined as an inner product space

`

X, x´, ´y
˘

which is complete with respect to the induced
norm }x} “

a

xx, xy. These definitions are equivalent; any such inner product space is easily seen
to be a Banach space that satisfies the parallelogram identity. Conversely, in a real Banach space
X that satisfies the parallelogram identity, the expression

xx,yy :“
1

4

`

}x` y}2 ` }x´ y}2
˘

defines an inner product whose induced norm is exactly the Banach space norm } ´ }. A similar
expression gives the inner product for a complex Hilbert space in terms of the norm. The addi-
tional structure of an inner product—and hence the ability to measure angles between vectors—
makes Hilbert spaces particularly well-suited to problems in geometry, physics, and signal pro-
cessing. However, when discussing maps between Hilbert spaces, especially in the context of cat-
egory theory, we do not wish to require that maps respect the inner product structures directly.
Hence we adopt a definition that treats Hilbert spaces as a special class of normed vector spaces.
This choice also allows definitions on normed vector spaces and Banach spaces to immediately
apply to Hilbert spaces without reference to the inner product.
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Example 2.2.3. Rn and Cn are Hilbert spaces with their usual inner products. Several key exam-
ples of real infinite dimensional Hilbert spaces are specializations of their Banach counterparts.

1. The space ℓ2pNq of square-summable sequences with inner product xx, yy “
ř

nPN xnyn.

2. The space L2ra,bs of square-integrable real functions (modulo almost everywhere agree-
ment with respect to Lebesgue measure) with inner product xf,gy “

şb
a fpxqgpxqdx.

3. More generally, the space L2pΩ,F,µq of square-integrable real-valued functions (modulo
agreement µ-almost everywhere) on a measure space pΩ,F,µq.

These examples have complex Hilbert space analogs.

Remark 2.2.4. As a Banach space, every closed linear subspace of a Hilbert space X is itself a
Hilbert space.

Every Hilbert space X admits a Hilbert space basis teα : α ă βu for some cardinal number
β, such that for every vector x P X, there is a unique sequence of coefficients cα P k, all but
countably many cα “ 0, such that x may be written as a limit of finite sums limαÑβ cαeα “ x.
We abbreviate this limit to x “

ř

α cαeα. Every Hilbert space basis for X has the same cardinality
β; this invariant is the dimension of X. A k-Hilbert space X is completely characterized its dimen-
sion. When a Hilbert space X admits a countable Hilbert space basis, X is said to be separable.
Equivalently, X is separable if and only if X has a countable dense subset.

The geometric properties of Hilbert spaces admit a notion of orthogonality not present in a
generic Banach space.

Definition 2.2.5. Let X be a Hilbert space. Two vectors x,y P X are orthogonal, denoted x K y, if
xx,yy “ 0.

Notation 2.2.6. Let X be a Hilbert space, and V Ď X a linear subspace. The orthogonal comple-
ment of V , denoted VK, is the linear subspace

VK :“ tx P X : x K v for all v P Vu.

Remark 2.2.7. The orthogonal complement VK is always a closed subspace of X—and thus a
sub-Hilbert space—even when V is not closed. The double complement pVKqK, is the topological
closure of V in X.

2.3 operators

Banach spaces are topological vector spaces. Therefore linear maps A : X Ñ Y between Ba-
nach spaces can be categorized according to how they interact with the topologies of X and Y.
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"Operator" serves as a catch-all term for partially defined linear maps, regardless of topological
properties.

Definition 2.3.1. Let X and Y be vector spaces. A (linear) operator A : X Ñ Y is a linear map
defined on a linear subspace DompAq Ď X. The domain of definition DompAq is the domain of
A, and X is the ambient space.

Remark 2.3.2. Linear operators are not required to be globally defined. They need not even be
defined on a sub-Banach space, as the linear subspace DompAq need not be closed. Therefore,
when specifying a linear operator, the domain must be specified as well. This flexibility allows,
for example, the analysis of differential operators on function spaces, which cannot be defined
for all functions, but only those which are sufficiently differentiable.

Care must be taken when composing partially defined operators. Given an operator A, let
RpAq denote its range. For a pair of composable unbounded operators A : X Ñ Y and B : Y Ñ Z,
it may be the case that RpAq Ę DompBq. In general, the domain of B ˝ A will be taken to be
DompB ˝Aq :“ tx P DompAq : Ax P DompBqu “ A´1pDompBqq, unless otherwise stated.

There are many ways that a linear operator A : X Ñ Y can interact with the topologies of X
and Y. We now highlight a few of these topological properties a linear operator may posses, and
the corresponding classes of operators.

2.3.1 Bounded and unbounded operators

Definition 2.3.3. Let A : X Ñ Y be a linear operator between normed vector spaces. The operator
norm of A is given by

}A}op :“ sup
xPDompAq

}Ax}Y

}x}X
.

If }A}op is finite, we say that A is a bounded operator. If }A}op “ 8, we say that A is an
unbounded operator.

Remark 2.3.4. We adopt the convention that all bounded operators are assumed to be globally
defined unless stated otherwise. That is, if A : X Ñ Y is a bounded operator, the domain DompAq

is assumed to be all of X, unless it is explicitly stated that A has a different domain. While
unbounded operators can, in principle, be defined globally, some form of choice is required to
exhibit such a map. Such pathological maps are rarely of interest, so we adopt the opposite
convention for unbounded operators; an unbounded operator is assumed to be a partial operator
unless otherwise stated.

Remark 2.3.5. The space BpX, Yq, of bounded operators between Banach spaces X and Y is a
vector space under pointwise addition and scaling. The operator norm } ´ }op defines a Banach
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space structure on BpX, Yq. Even when X and Y are Hilbert spaces, the space
`

BpX, Yq, } ´ }op
˘

is
a Banach space, unless X or Y is finite dimensional.

Example 2.3.6. Let Ckpr0, 1s; Rq denote the real Banach space of k-times continuously differ-
entiable real-valued functions supported on r0, 1s, equipped with the sup-norm } ´ }8. Let
D : C0pr0, 1s; Rq Ñ C0pr0, 1s; Rq denote the derivative map Dpfq “ d

dxf with domain DompDq “

C1pr0, 1s; Rq Ď C0pr0, 1s; Rq. The operator D is unbounded; a continuous map f : r0, 1s Ñ R with
sup-nom }f}8 “ 1 may have an arbitrarily large derivative at a point. It is not globally defined
as not all continuous functions are continuously differentiable.

If C1pr0, 1s; Rq is instead equipped with the Banach space norm }f} “ }f}8 ` }Df}8, the map
D : C1pr0, 1s; Rq Ñ C0pr0, 1s; Rq is a globally defined bounded operator.

Boundedness is closely related to continuity, as evidenced by the following theorem.

Theorem 2.3.7. Let A : X Ñ Y be a Banach space operator with domain DompAq. The following are
equivalent.

(i) A is bounded on its domain.

(ii) A is continuous on its domain.

(iii) A maps the unit ball B1p0q X DompAq in A to a bounded set in Y.

Thus an operator A : X Ñ Y with domain DompAq is bounded if and only if it is continuous
on its domain. Similarly, unbounded operators are exactly those operators that are discontinuous
on their domains. Hence a bounded operator is exactly a linear map that respects the topology
of its domain as a normed vector space.

2.3.2 Densely defined operators

Definition 2.3.8. An operator A : X Ñ Y is densely defined if DompAq is dense in X.

Remark 2.3.9. Since a linear subspace V Ď X is dense in X with respect to a chosen topology, having
a dense domain of definition is a topological property of an operator—not an algebraic property.

A Hilbert space operator A : X Ñ Y may always be extended to a densely defined one. Suppose
that DompAq Ĺ X is a proper subset. There is a linear operator Â : X Ñ Y that extends A with
domain DompÂq “ DompAq ` DompAq

K
, where DompAq

K
denotes the orthogonal complement

of DompAq in the ambient space X, and "`" denotes the internal direct sum of linear subspaces.
On elements x P DompAq

K
we take Âpxq “ 0.
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2.3.3 Closed operators

Definition 2.3.10. LetA : X Ñ Y be an unbounded Banach space operator with domain DompTq Ď

X. A is closed if its graph ΓpAq :“ tpx,Axq : x P DompAqu Ď X‘ Y is topologically closed. A is
closable if the closure ΓpAq Ď X‘ Y is the graph of an operator A : X Ñ Y. The extension A is
called the closure of A.

A bounded operator is closed if and only if its domain is closed. Hence a globally-defined
bounded operator is always closed. For unbounded operators, being closed is perhaps the most
important way in which an unbounded operator can still be well behaved. Closedness (or clos-
ability) is the necessary attribute in order to carry out a variety of constructions, including those
in spectral theory and semigroup theory, to be discussed later. The essence is the following equiv-
alent definition of closedness: A : X Ñ Y is closed if whenever xn is a sequence in DompAq that
converges to x P X, and Apxnq converges to y P Y, then x P DompXq and Ax “ y. Similarly, A is
closable if and only if whenever xn Ñ 0 in DompAq and Axn Ñ y P Y, the limit y “ 0. Hence we
see that to be closed is to satisfy a weak form of continuity, as further evidenced by the following
straightforward proposition.

Proposition 2.3.11. Let A : X Ñ Y be an unbounded operator. If T is closed, then kerpTq Ď X is closed.

Closed operators enjoy another useful topological property. While an unbounded operator is
discontinuous, a closed unbounded operator is continuous with respect to the graph norm.

Definition 2.3.12. Let A : X Ñ Y be a closed Banach space operator with domain DompAq. The
graph norm on DompAq is the norm }x}Γ pAq :“

`

}x}2X ` }Ax}2Y

˘1{2.

One may check that } ´ }Γ pAq is a well-defined norm on DompAq. Moreover DompAq is com-
plete with respect to } ´ }Γ pAq, making

`

DompAq, } ´ }Γ pAq

˘

a Banach space.

Proposition 2.3.13. Let A : X Ñ Y be a closed Banach space operator. A defines a bounded operator
A : DompAq Ñ Y with respect to the graph norm on A.

2.3.4 Closed range operators

Definition 2.3.14. Let A : X Ñ Y be a Banach space operator. A has closed range if its range
RpAq Ď Y is topologically closed.

To have closed range is a surprisingly restrictive property; even bounded operators usually
fail to have closed range. A handful of equivalent characterizations to having closed range are
offered by the closed range theorem [15, 78].
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Theorem 2.3.15. Let A : X Ñ Y be a closed, densely defined Banach space operator. The following are
equivalent.

(i) A has closed range.

(ii) A˚ has closed range.

(iii) 0 is not an accumulation point in the spectrum σpA˚Aq.

(iv) There is a constant C such that }x} ď C}Ax} for all x P DompAq X kerpAqK.

This theorem gives an indication of why many operators fail to have closed range. In order to
have closed range, an operator cannot shrink inputs too quickly.

Remark 2.3.16. For an operator A : X Ñ Y, "closedness" and "closed range" are independent
properties. There are Banach space operators with closed range that fail to be closed, and closed
operators which fail to have closed range.

One useful property of a closed range operators between Hilbert spaces is that it admits a
bounded Moore-Penrose pseudoinverse.

Proposition 2.3.17. Let A : X Ñ Y be a closed, densely defined Hilbert space operator. There is a unique
closed, densely defined operator A: : Y Ñ X with domain DompA:q “ RpAq ` RpAqK, called the Moore-
Penrose pseudoinverse of A, which satisfies the following properties.

(i) kerpA:q “ RpAqK.

(ii) RpA:q “ DompAq X kerpAqK.

(iii) A:A is the orthogonal projection onto the closure DompAq X kerpAqK.

(iv) AA: is the orthogonal projection onto the closure RpAq.

Corollary 2.3.18. When A : X Ñ Y is a closed, densely defined Hilbert space operator with closed range,
the pseudoinverse A: : Y Ñ X is globally defined and bounded.

2.3.5 Structure preserving operators

There are a variety of different ways in which a Banach space or Hilbert space operator can
be "structure preserving." Four primary classes of structure preserving maps are isomorphisms,
isometries, co-isometries, and unitary maps.

Definition 2.3.19. A globally-defined Banach space operator A : X Ñ Y is an isomorphism if it is
a bounded bijection with bounded inverse.
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Isomorphisms are exactly linear homeomorphisms with respect to the topologies induced by
the Banach space norms. By the open mapping theorem (Theorem 2.4.2), every bounded linear
bijection has a bounded inverse.

While isomorphisms respect the topologies of Banach spaces, they do not respect the norms
per se. In contrast, an isometry is an operator that preserves the norm structure exactly.

Definition 2.3.20. A globally-defined Banach space operator A : X Ñ Y is an isometry if }Ax}Y “

}x}X for all x P DompAq.

All isometries are bounded by definition. A canonical example of an isometry is the right-shift
operator on an ℓp-sequence space, given by Rpx1, x2, x3, ¨ ¨ ¨ q “ p0, x1, x2, x3, ¨ ¨ ¨ q. The Fourier
transform on L2pRq provides another fundamental example, becoming an isometry after appro-
priate normalization.

While isometries respect the Banach space norms, there is no guarantee that an isometry is a
bijection. When there is an isometric isomorphism between two Banach spaces, we say they are
isometrically isomorphic. This is one of the strongest ways in which two Banach spaces can be
equivalent to one another.

On Hilbert spaces, there are more designated classes of structure preserving maps. These maps
are best characterized through the use of the linear adjoint, discussed in detail in Section 2.5. All
the following classes of structure preserving maps are bounded, so one only needs the usual
bounded linear adjoint.

Definition 2.3.21. Let A : X Ñ Y be a Hilbert space operator. Let IX and IY denote the identity
maps on X and Y respectively.

• A is an isometry if A˚A “ IX.

• A is a co-isometry if AA˚ “ IY .

• A is unitary if A is both an isometry and a co-isometry.

Notation 2.3.22. Some sources reserve the term "unitary" for complex Hilbert spaces, and use
"orthogonal" for the analogous property on real Hilbert spaces. We use "unitary" for real and
complex Hilbert spaces for ease.
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2.3.6 Hilbert-Schmidt operators

Definition 2.3.23. Let X and Y be Hilbert spaces, and teiuiPI a Hilbert space basis of X. The
Hilbert-Schmidt norm of a bounded operator A : X Ñ Y is given by

}A}HS :“

˜

ÿ

iPI

}Aei}
2
X

¸1{2

P r0, 8s .

A bounded operator A : X Ñ Y is a Hilbert-Schmidt operator if }A}HS ă 8.

The class of Hilbert-Schmidt operators between Hilbert spaces X and Y are closed under addi-
tion and scaling. Let HSpX, Yq Ď BpX, Yq denote the linear subspace of Hilbert-Schmidt operators.
HSpX, Yq forms a Hilbert space with inner product

xA,ByHS :“
ÿ

iPI

xAei,BeiyY .

This Hilbert-Schmidt inner product serves as an infinite dimensional analog of the familiar Frobe-
nius inner product of matrices.

Hilbert-Schmidt operators are one of the most well-behaved classes of Hilbert space operators.
Beyond being bounded, Hilbert-Schmidt operators are compact, meaning they map bounded sets
to precompact sets. All finite rank operators are Hilbert-Schmidt.

Remark 2.3.24. The Hilbert-Schmidt norm on HSpX, Yq is not equivalent to the operator norm on
HSpX, Yq. However, they are related by the inequality } ´ }op ď } ´ }HS.

2.4 fundamental theorems

The theory of Banach spaces rests on four key theorems, sometimes called the four pillars of
functional analysis [125]:

1. The Hahn-Banach theorem: bounded linear functionals can always be extended from sub-
spaces while preserving their norm.

2. The open mapping theorem: every surjective continuous linear operator between Banach
spaces is an open map.

3. The Banach-Steinhaus theorem: every pointwise-bounded family of continuous linear oper-
ators is uniformly bounded.

4. The closed graph theorem: a linear operator between Banach spaces is continuous if and
only if its graph is closed.
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These four theorems, while simple to state, capture deep properties of infinite-dimensional
spaces and form the foundation upon which much of functional analysis is built. Proofs of these
theorems may be found in any standard text on functional analysis, such as [15, 73, 100].

Theorem 2.4.1 (Hahn-Banach). Let X be a normed k-vector space, and V Ď X a linear subspace. Every
continuous linear functional f : V Ñ k may be extended to a continuous linear functional f̃ : X Ñ k such
that }f̃}op “ }f}op.

Theorem 2.4.2 (Open mapping theorem). LetA : X Ñ Y be a bounded surjective Banach space operator.
For every open subset U Ď X, ApUq Ď Y is open.

Theorem 2.4.3 (Banach-Steinhaus). Let X be a k-Banach space and Y a normed k-vector space, and
A Ď BpX, Yq a collection of bounded linear operators. If supAPA }Ax} ă 8 for every x P X, then
supAPA }A}op ă 8.

Theorem 2.4.4 (closed graph theorem). Let A : X Ñ Y be a globally-defined Banach space operator. A
is bounded if and only if the graph ΓpAq is closed.

2.5 adjoints

Definition 2.5.1. Let A : X Ñ Y be a Hilbert space operator with domain DompAq. An operator
B : Y Ñ X is an adjoint of A if xAx,yyY “ xx,A˚yyX for all x P DompTq and y P DompBq, and
DompBq is maximal with with respect to this property.

Remark 2.5.2. When A : X Ñ Y is not densely defined, the adjoint A˚ is not unique. As a trivial
example, consider a Hilbert space X and the zero-operator 0 : X Ñ X with the one-point domain
t0u. Any maximally-defined operator A : X Ñ X will satisfy the definition of an adjoint of 0.
However, when A is densely defined, the Hahn-Banach theorem and the Riesz representation
theorem ensure the adjoint A˚ is unique.

Proposition 2.5.3. If A : X Ñ Y is a densely defined Hilbert space operator, A has a unique adjoint,
denoted A˚ : Y Ñ X.

Remark 2.5.4. The domains of A and A˚ are intimately linked; extending the domain of T may
require shrinking the domain of T˚ to maintain the defining property of a linear adjoint.

The following proposition follows directly from the definition of the adjoint.

Proposition 2.5.5. Let A : X Ñ Y be a densely defined linear operator. The adjoint A˚ : Y Ñ X is a closed
linear operator.
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Remark 2.5.6. The adjoints of bounded linear operators enjoy all the usual properties of adjoints
in finite-dimensional linear algebra. For example, A˚ is always globally defined, and the operator

p´q˚ : BpX, Yq Ñ BpY,Xq

is an involutive isometric isomorphism, where Bp´, ´q is the Banach space of globally defined
bounded operators equipped with the operator norm. Adjoints of unbounded operators do not
enjoy these same properties. For example, given a pair of unbounded operators A,B : X Ñ Y, it
is not in general the case that pA`Bq˚ “ A˚ `B˚.

Adjoints are closely linked to closedness of operators. Suppose that A : X Ñ Y is a densely
defined operator with adjoint A˚ : Y Ñ X. If A˚ itself is densely defined, then it has a unique
closed adjoint pA˚q˚ : X Ñ Y. Moreover, by the definition of the adjoint, this operator pA˚q˚

must extend the operator A; otherwise pA˚q˚ would not be maximally defined. It follows that A
must be a closable operator, and pA˚q˚ “ A is its closure. This argument proves the following
proposition.

Proposition 2.5.7. Let A : X Ñ Y be a densely defined Hilbert space operator. The following are equiva-
lent.

(i) A is closable.

(ii) A˚ is densely defined.

For closed, densely defined operators, the adjoint maintains its geometry from finite dimen-
sional linear algebra.

Proposition 2.5.8. Let A : X Ñ Y be a closed, densely defined Hilbert space operator. The following
identities hold.

(i) kerpAq “ RpA˚qK.

(ii) kerpA˚q “ RpAqK.

(iii) RpAq “ kerpA˚qK.

(iv) RpA˚q “ kerpAqK.

Remark 2.5.9. Observe that when A has closed range, one exactly recovers the familiar relation-
ship RpAq “ kerpA˚qK of finite dimensional linear algebra.

Definition 2.5.10. Let T : X Ñ X be a densely defined unbounded Hilbert space operator. T is
symmetric if xTx,yy “ xx, Tyy for all x,y P DompTq. The operator T is self-adjoint if T “ T˚.
Finally, T is essentially self-adjoint if T has a self-adjoint extension.

43



For bounded operators in BpX,Xq, "symmetric" and "self-adjoint" are coextensive. However, for
a symmetric unbounded operator A : X Ñ X, it could be the case that DompA˚q Ľ DompAq,
making A a symmetric operator that fails to be self-adjoint. In this case, A˚ is a closed extension
of A. If A is essentially self-adjoint, then A˚ “ A will be self-adjoint. Since A˚ is always closed,
every self-adjoint operator is closed.

We conclude this section with an essential theorem, sometimes referred to as von Neumann’s
theorem, due to its connection to von Neumann’s seminal work on quantum mechanics [2].
Let A : X Ñ Y be a Hilbert space operator with domain DompAq. We say that A is positive
semidefinite if xAx, xy ě 0 for all x P DompAq. We say that A is positive if it is both positive
semidefinite and self-adjoint.

Theorem 2.5.11 (von Neumann’s theorem). Let A : X Ñ Y be a closed, densely defined Hilbert space
operator. Both A˚A and AA˚ are positive operators.

Unlike the other theorems of this section, the proof of von Neumann’s theorem is not straight-
forward. A full proof may be found in [73, Theorem 3.24].

2.6 quotients of banach spaces

Taking the quotient of a Banach space X by a subspace V has some subtlety. Not every linear
subspace V Ď X is itself a Banach space. while the norm } ´ }X on X restricts to a norm on V , the
subspace V need not be topologically complete with respect to this norm. For example, consider
the linear subspace of all polynomials Pra,bs Ď Cra,bs. The linear subspace Pra,bs is not itself
a Banach space, but is merely a normed vector space. The Weierstrass approximation theorem
ensures that every f P Cra,bs is a limit of Cauchy sequences in Pra,bs, so Pra,bs cannot be
complete with respect to the sup-norm. Fundamentally, the problem is that Pra,bs is not closed.
In general, a linear subspace V of a Banach space X is a Banach space with respect to its induced
norm if and only if V is topologically closed in X.

Similar difficulties occur with quotients. Given a linear subspace V of a Banach space X, the
quotient vector space X{V may be formed as usual as the set of cosets tx` V : x P Xu. When V
is closed, the Banach space norm } ´ }X induces the following norm on X{V :

}x` V}X{V “ inft}x´ v}X : v P Vu.

This is a well-defined norm if and only if V is closed in X. Geometrically, this norm measures the
distance from x to the closed subspace V . When V is closed, the quotient space X{V is complete
with respect to } ´ }X{M, and hence is a Banach space. Hence a quotient of Banach spaces is a
Banach space, but the quotient of a Banach space by a linear space need not be Banach.
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Proposition 2.6.1. Let A : X Ñ Y be a bounded Banach space operator. If the range RpAq is closed, there
is an isomorphism of Banach spaces X{ kerpAq – RpAq.

Proof. Simply use the usual map ϕ : X{ kerpAq Ñ RpAq defined by ϕpx` Vq “ Ax.

When RpAq isn’t closed, this theorem fails. While there is still an isomorphism of vector spaces,
the range RpAq will fail to be a Banach space, and hence ϕ will fail to be a Banach space isomor-
phism.

The quotient structure of Hilbert spaces is similar to that of Banach spaces. Let X be a Banach
space. When } ´ }X satisfies the parallelogram identity, so does the induced norm } ´ }X{V on
the quotient Banach space X{V for a closed subspace V Ď X. Hence a subspace quotient X{V in a
Hilbert space is itself a Hilbert space exactly when V is closed.

The structure of a quotient Hilbert space X{V can be understood through orthogonal comple-
ments. Given a closed subspace V of a Hilbert space X, we can decompose X as an orthogonal
direct sum, X “ V ‘ VK, where VK is the orthogonal complement of V in X. Applying the first
isomorphism theorem (Proposition 2.6.1) to the orthogonal projection P : X Ñ VK gives a canoni-
cal isomorphism X{V – VK, providing the quotient space with a natural Hilbert space structure
inherited from X. Moreover, this isomorphism is unitary.

Using this isomorphism, we no longer need to take an infimum to define the quotient norm;
the norm of an equivalence class x` V in X{V is simply the norm of its unique representative in
VK. This additional structure makes Hilbert space quotients particularly easy to work with.

2.7 semigroups

Definition 2.7.1. Let X be a Banach space. A strongly continuous one-parameter semigroup on
X, or C0-semigroup on X, is a map T : r0, 8q Ñ BpXq that satisfies the following conditions.

(i) Tp0q “ I.

(ii) Tps` tq “ TpsqTptq for all s, t ě 0.

(iii) T is continuous in the strong operator topology on BpXq.

If item (iii) is replaced with

(iii’) T is continuous with respect to the operator norm on BpXq,

then T is a uniformly continuous semigroup. If a C0-semigroup has the additional property

(iv) }Tptq}op ď 1 for all t ě 0,

then T is a contraction semigroup.
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To every C0-semigroup T : r0, 8q Ñ BpXq, there is an associated operator AT : X Ñ X called
the infinitesimal generator defined by the limit

AT pxq :“ lim
tÑ0`

Tptqx´ x

t
,

whenever the limit exists. The domain DompAT q is exactly the set of x P X for which this limit
converges. One may confirm by direct computation that the infinitesimal generator AT is closed
and densely defined. Moreover, there is a one-to-one correspondence between C0-semigroups
and their infinitesimal generators.

Remark 2.7.2. Even though the generator AT may be an unbounded operator with a partial
domain DompAT q Ĺ X, the operator Tptq : X Ñ X is bounded and globally defined for all t ě 0.

When we wish to highlight the infinitesimal generator A of a semigroup T , we will often write
etA or expptAq in place of Tptq. This evocative notation emphasizes the following relationship
between C0-semigroups ordinary differential equations on Banach spaces.

Proposition 2.7.3. The map xptq “ etAx0 is a mild solution to the initial value problem:

9xptq “ Axptq

xp0q “ x0.

That is, xptq satisfies the integral equation xptq “ xp0q `
şt
0Axpsq ds. When x0 P DompAq, xptq is a

strong solution to the initial value problem.

Not every closed, densely defined operator A : X Ñ X generates a C0-semigroup. There are
a variety of useful and powerful theorems that characterize the operators that are infinitesimal
generators.

Definition 2.7.4. Let A : X Ñ X be a complex Banach space operator. A complex λ P C is a regular
value of A if the following conditions hold:

(i) The map Aλ :“ A´ λI is injective.

(ii) The inverse A´1
λ : RpAλq Ñ X is bounded.

(iii) RpAλq is dense in X.

The resolvent set of A, denoted ρpAq, is the set of all regular values of A.

Remark 2.7.5. Under suitable conditions on A : X Ñ Y, the conditions defining a regular value of
A simplify considerably. If A is a closed operator, then condition (iii) may be replaced with the

46



requirement that Aλ is surjective. If A is bounded, all three conditions may be replaced with the
single requirement that Aλ is a bounded linear isomorphism.

Remark 2.7.6. For a real Banach space X, the resolvent of an unbounded operator A : X Ñ X is
the resolvent of the complexification AC : XC Ñ XC. Through this complexification, the spectral
theory of complex Banach spaces and Hilbert spaces may be adapted to real spaces.

Theorem 2.7.7 (Hille-Yosida). Let A : X Ñ X be an unbounded linear operator, r P R, and M ą 0.
The map A is the generator of a C0-semigroup T satisfying }Tptq} ď Mert if and only if the following
conditions hold.

(i) A is closed and densely defined.

(ii) Every real λ ą r is in the resolvent ρpAq, and for all n P Ną0,

}pλI´Aq´n} ď
M

pλ´ rqn
.

Remark 2.7.8. Setting M “ 1 and r “ 0 gives necessary and sufficient criteria for A to generate a
contraction semigroup. However, the Lumer-Phillips theorem is often more useful in practice.

Definition 2.7.9. An operator A : X Ñ X is dissipative if for all x P DompXq and λ ą 0, we have

}pλI´Aqx} ě λ}x}.

Similarly, A is accretive if for all x P DompXq and λ ą 0, we have

}pλI`Aqx} ě λ}x}.

Theorem 2.7.10 (Lumer-Phillips). LetA : X Ñ X be a Banach space operator. The mapA is the generator
of a contraction semigroup if and only if the following conditions hold.

(i) A is densely defined.

(ii) A is dissipative.

(iii) A´ λI is surjective for some λ ą 0.

2.8 the spectral theorem

Definition 2.8.1. Let A : X Ñ X be an operator on a Banach space. The spectrum of A, denoted
σpAq, is the complement of the resolvent set of A in C. That is, σpAq :“ CzρpAq.
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Proposition 2.8.2. Let A : X Ñ X be a Hilbert space operator. The spectrum σpAq and resolvent ρpAq

satisfy the following properties.

(i) σpAq Ď C is open and ρpAq Ď C is closed.

(ii) If A is a bounded operator, then σpAq is a bounded subset of C.

(iii) If A is self-adjoint, then σpAq is real.

(iv) If A is a positive operator, then σpAq is non-negative.

Remark 2.8.3. Unlike finite dimensional vector spaces, not all points in the spectrum of an op-
erator A : X Ñ X are eigenvalues. That is, when λ P σpAq, there is no guarantee that there is a
vector x such that Ax “ λx (after possibly pushing through the complexification).

Even without eigenvectors, a self-adjoint operator A : X Ñ X may be diagonalized by the
spectral theorem.

Theorem 2.8.4 (spectral theorem). Let A : X Ñ X be a self-adjoint operator on a separable k-Hilbert
space X. There is a finite measure space pΩ,µq, a unitary isomorphism Φ : X Ñ L2pΩ,µ;kq, and a real
measurable µ-a.e. finite function f : Ω Ñ k with corresponding multiplication operator Mf such that the
following conditions hold.

(i) x P DompAq if and only if MfΦx “ pfq ¨ pΦxq is square integrable.

(ii) Φ´1MfΦ “ A.

(iii) The essential image of f is exactly σpAq.

Remark 2.8.5. This is the multiplicative form of the spectral theorem; there are other equivalent
formulations in terms of spectral measures and direct integrals. The spectral measure formulation
will be useful for applying the Borel function calculus, which allows one to apply functions like
cospxq, sinpxq{x, or more generally any Borel function to Hilbert space operators. However, we
utilize the multiplicative form whenever possible as it is the most intuitive formulation of the
spectral theorem.

The spectral theorem for operators acts as an infinite-dimensional analogue to diagonalization.
The multiplication operator Mf behaves like a diagonal operator on L2pΩ,µ;kq, and the unitary
operator Φ acts like a change of basis.
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F O U N D AT I O N S F O R C E L L U L A R S H E AV E S O F H I L B E RT S PA C E S

The functors of the classical theory of cellular sheaves, as developed in Chapter 1, are gener-
ally valued in abelian categories, such as the category of vector spaces. Hansen and Ghrist [54]
introduced weighted cellular sheaves, valued in the category FinHilbk of finite-dimensional
Hilbert spaces. Weighted cellular sheaves admit a rich spectral theory, akin to spectral graph
theory, which has found application in opinion dynamics [55], neural networks [13, 54], clock
synchronization [90], and beyond. However, some applications naturally lead to sheaves valued
in infinite-dimensional Hilbert spaces with unbounded, partially-defined operators as restriction
maps. This chapter develops the operator-theoretic foundations necessary to extend cellular sheaf
theory to this infinite-dimensional setting.

The passage from finite to infinite dimensions introduces two fundamental complications.
First, the category of Hilbert spaces and bounded operators, while extensively studied, lacks the
abelian structure that makes the finite-dimensional theory so tractable. Second, when we further
admit unbounded operators in our cellular sheaves, discontinuities are introduced which cause
even basic categorical constructions to become delicate. Composition of morphisms requires care-
ful attention to domains, cochain complexes associated to sheaves may fail to have well-defined
cohomology groups, and certain categorical limits cease to exist.

This chapter outlines the addresses these challenges through three main developments. Sec-
tion 3.1 introduces the necessary categories of Hilbert spaces, carefully distinguishing between
bounded operators pHilbkq and unbounded operators pHilb0,k, CoreHilb0,kq. We demonstrate
that while Hilbk retains the essential homological properties of FinHilbk, the categories with
unbounded operators require the framework of restriction categories to handle partially-defined
morphisms. Section 3.2 reviews the theory of Hilbert complexes, due to Brüning and Lesch
[17], to provide a suitable generalization of cochain complexes that accommodates unbounded
coboundary operators. Finally, Section 3.3 analyzes block operators between direct sums of
Hilbert spaces, establishing conditions under which these operators are closed or closable. To-
gether, these developments provide the categorical, homological, and operator-theoretic infras-
tructure for the cellular sheaf theory developed in subsequent chapters.
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3.1 categories of hilbert spaces

To define cellular sheaves valued in Hilbert spaces, we first clarify the relevant categories of
Hilbert spaces. The category of k-Hilbert spaces and bounded operators, denoted Hilbk, is a well
studied category in the theories of categorical quantum mechanics [1, 10, 64], dagger categories
[62, 109, 110], and operator categories [44, 123]. We will also need a category of Hilbert spaces
with unbounded operators, Hilb0,k, which is substantially less well-behaved. This category, with
its partially-defined maps, may be fruitfully studied through the lens of restriction categories
[26–28]. Other categories of Hilbert and Banach spaces have also been studied [79, 88], but are
not suitable for cellular sheaf theory.

3.1.1 The category of Hilbert spaces and bounded operators

Definition 3.1.1. The category of k-Hilbert spaces and bounded operators, denoted Hilbk, con-
sists of the following data.

• Objects. The objects of Hilbk are k-Hilbert spaces.

• Morphisms. A morphism A : X Ñ Y is a globally-defined k-linear bounded operator.

Remark 3.1.2. The category Hilbk has been extensively studied. Moreover, the categorical struc-
ture has recently been axiomatized by Heunen and Kornell [63].

Remark 3.1.3. Morphisms in the category Hilbk are not required to respect the inner product
structure on each object, but merely the topologies they induce. Continuity has no regard for
orthogonality. Consequently, isomorphisms in Hilbk are simply bounded linear bijections, not
unitary maps.

Hilbk is also a prototypical example of a dagger category, possibly first introduced by Burgin
under the name "categories with involutions" [18]. A dagger category is a category C equipped
with a dagger—a contravariant involutive functor p´q: : C Ñ Cop which is the identity functor
on objects. In Hilbk, the dagger is given by the linear adjoint p´q˚. Dagger categories are used
in the study of categorical quantum mechanics, where dagger compact categories form a general
setting for studying the underlying operations of quantum theory [64].

The extra data of a Banach space norm makes Hilbk less well behaved than Vectk, the category
of k-vector spaces with linear maps for morphisms. For example, Hilbk fails to be an abelian
category. Perhaps the most straightforward way to see this is that for a morphism A : X Ñ Y, we
have an isomorphism co-impAq – impAq if and only if RpAq is closed in Y.
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Nonetheless, Hilbk is almost abelian—it is a prototypical example of the recently defined con-
cept of an R˚-category [87]. In a few words, an R˚-category is an additive dagger-category whose
biproducts and kernels are dagger limits. They can be thought of through the following anal-
ogy; abelian categories are to abelian groups what R˚-categories are to Hilbert spaces. As an
R˚-category, Hilbk is contained in several standard classes of weakly abelian categories. Hilbk
is quasi-abelian in the sense of Schneiders [107, Definition 1.1.3], and hence is homological
[103], satisfying the five, nine, and snake lemmas, as well as admitting the homology long exact
sequence. Moreover, Hilbk is finitely complete.

Remark 3.1.4. One might object that morphisms in Hilbk failing to respect the inner products
is an indication that Hilbk is not the "correct" category of Hilbert spaces to work with. If one
wishes to avoid these problems, there are two clear options.

First, one could change the morphism from bounded linear maps to maps that respect the
inner product structure directly, such as unitary operators, isometries, or partial isometries. While
restricting to any of these classes of morphisms yields a valid category, it will not be adequate for
cellular sheaf theory. These classes of maps are too restrictive to make for an interesting category
of Hilbert spaces, and lack the necessary expressive power for applications of cellular sheaves.

Second, one could study Hilbk as a dagger category per se. Following the way of the dagger [72],
to fully treat Hilbk as a dagger category is to preserve the structure of linear adjoints whenever
possible. For example, while any continuous bijective linear map is an isomorphism in Hilbk,
a dagger isomorphism is an adjoint-preserving isomorphism, which is exactly a unitary map.
While fruitful in other domains [64], treating Hilbk as a dagger category is too rigid for the theory
of cellular sheaves; there are insufficiently many dagger-respecting limits (see Remark 4.2.3).
Moreover, the dagger perspective cannot accommodate unbounded operators.

3.1.2 Categories of Hilbert spaces and unbounded operators

We will also utilize categories of Hilbert spaces with unbounded and partially-defined operators.
Such categories are understudied in comparison to Hilbk. We approach unbounded and partially
defined operators through two key categories of Hilbert spaces.

• Hilb0,k, the category of Hilbert spaces and partially-defined linear operators.

• CoreHilb0,k, where unbounded partial operators are required to respect certain subspace
containment relationships.

These categories of Hilbert spaces, which are best thought of as 2-categories, follow the ap-
proaches of Robinson and Rosolini’s categories of partial maps [101], Carboni’s bicategories of
partial maps [19], and Cockett and Lack’s restriction categories [26–28].
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Notation 3.1.5. Let A : X Ñ Y be an unbounded operator with DompAq “ V Ď X. To disam-
biguate the domain of A as an unbounded operator and the domain of A as a morphism in
a category, we use domain exclusively to refer the operator domain V , and source to refer the
object X.

Definition 3.1.6. The category of k-Hilbert spaces and partially-defined operators, denoted
Hilb0,k, consists of the following data.

• Objects. The objects of Hilb0,k are k-Hilbert spaces.

• Morphisms. A morphism A : X Ñ Y is a k-linear operator A with a specified domain
DompAq Ď X. Operators which map by the same rule on different partial domains constitute
distinct morphisms in Hilb0,k. When convenient, we will denote a morphism A : X Ñ Y as
a pair pA, DompAqq to highlight this domain dependence.

• Composition. The composition of morphisms

X
A−Ñ Y

B−Ñ Z

is the usual composition B ˝A : X Ñ Z with domain tx P DompAq : Ax P DompBqu.

Let A and B be a composable pair of closed densely-defined operators. Since B ˝A need not
be closed nor densely defined, we cannot restrict the class of morphisms to only closed densely-
defined operators. This difficulty, at least for densely-defined operators, can be partially mitigated
by including certain domain information in the objects and restricting the admissible ranges of
operators. This motivates our second category of Hilbert spaces and unbounded operators.

Definition 3.1.7. The category of cored k-Hilbert spaces, denoted CoreHilb0,k, is the following
category:

• Objects. Each object of CoreHilb0,k is a pair pX,Vq of a k-Hilbert space X and a linear
subspace V Ď X. We call V the core of the object pX,Vq;

• Morphisms. A morphism A : pX,Vq Ñ pY,Wq is a k-linear operator A with domain
DompAq Ě V such that ApVq Ď W. When convenient, we will denote a morphism A : X Ñ Y

as a pair pA, DompAqq.

• Composition. The composition of morphisms

pX,Vq
A−Ñ pY,Wq

B−Ñ pZ,Uq

is the usual composition B ˝A with domain tx P DompAq : Ax P DompBqu. By hypothesis,
V Ď DompB ˝Aq.

53



Remark 3.1.8. We make a few remarks about these categories of Hilbert spaces and unbounded
operators.

1. One may form a full subcategory DenseCoreHilb0,k induced by those objects pX,Vq such
that V is a dense linear subspace of X. Consequently, all morphisms (and their composi-
tions) are densely-defined operators. This will be a convenient category to work in, as it
will ensure maps out of the object may be assumed to have a common dense domain. Un-
fortunately, since the composition of closed densely-defined operators need not be closed,
we cannot form a category of closed densely-defined operators with cores. Nonetheless, we
use ClDenseCoreHilb0,k to refer to the quiver of densely-cored Hilbert spaces and closed
densely-defined linear operators objects and morphisms.

2. Hilbk embeds into Hilb0,k by proper inclusion. Moreover, Hilbk embeds into the category
CoreHilb0,k in two different ways:

pX
A−Ñ Yq ÞÑ ppX, 0q A−Ñ pY, 0qq ,

pX
A−Ñ Yq ÞÑ ppX,Xq

A−Ñ pY, Yqq.

Neither of these inclusions are full, and the second inclusion lands inside of the quiver
ClDenseCoreHilb0,k.

3. Hilb0,k itself embeds into CoreHilb0,k by:

ι : pX
A−Ñ Yq ÞÑ ppX, 0q A−Ñ pY, 0qq.

Similarly, there is a forgetful functor U : CoreHilb0,k Ñ Hilb0,k defined by

U :
`

pX,Vq
A−Ñ pY,Wq

˘

ÞÑ pX
A−Ñ Yq.

4. Hilbk is a subcategory of TopVect
k

, the category of topological vector spaces with contin-
uous linear maps. On the other hand, Hilb0,k and CoreHilb0,k are not subcategories of
TopVect

k
, as unbounded operators are discontinuous.

5. Taking adjoints is not a functorial operation on Hilb0,k or CoreHilbk,0 as not every un-
bounded operator admits a uniquely defined adjoint. Similarly adjoints are not functorial
on DenseCoreHilb0,k. While every densely-defined morphism A : pX,Vq Ñ pY,Wq has an
adjoint, it need not be densely defined (and hence not a morphism in DenseCoreHilb0,k)
when A isn’t a closed operator. Therefore these categories are not dagger categories. How-
ever adjoints form a dagger-like structure on the quiver of Hilbert spaces and closed densely-
defined operators.
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Proposition 3.1.9. The embedding ι : Hilb0,k Ñ CoreHilb0,k and the forgetful functor

U : CoreHilb0,k Ñ Hilb0,k

form an adjoint pair ι % U.

Proof. Let X P Hilb0,k and pY,Wq P CoreHilb0,k. We may define a natural bijection ΦX,pY,Wq :

CoreHilb0,kpιpXq, pY,Vqq Ñ Hilb0,kpX,UpY,Vqq by

ΦX,pY,WqppY, 0q A−Ñ pX,Vqq ÞÑ pY
A−Ñ Xq.

It is straightforward to check this assignment in natural in X and pY,Wq.

Unlike Hilbk, which is finitely complete, both Hilb0,k and CoreHilb0,k lack many finite limits.
For example, Hilb0,k is missing certain pullbacks, as shown in the next example.

Example 3.1.10. Let X A−Ñ Z
B

Ð− Y be a cospan where DompAq and DompBq are proper subsets of
X and Y. One may try to form a pullback by defining K :“ tpx,yq : Ax “ Byu Ď X‘ Y, and form
the following square with projections for legs.

K Y

X Z

πY

πX B

A

Consider another Hilbert space H and maps α : H Ñ X and β : H Ñ Y such that Bβ “ Aα.
There is a map ϕ : H Ñ K such that πXϕ “ α and πYϕ “ β if and only if Dompαq “ Dompβq.
If this equality of domains does not hold, ϕphq “ pαphq,βphqq can only be defined on Dompαq X

Dompβq, and K fails to be a pullback.

Remark 3.1.11. A nearly identical argument can be used to show that the categories CoreHilb0,k

and DenseCoreHilb0,k fail to have certain pullbacks as well.

This lack of limits poses a problem for defining cellular sheaves valued in Hilbert spaces with
unbounded operators. For example, it becomes unclear how to define sections, which are usually
defined as limits. The theory of restriction categories, as elucidated by Cockett and Lack [26–28],
shows how to view certain limit-like constructions (including the proposed pullback square in
Example 3.1.10) as a weaker notion of limit in a certain 2-category. The key is to add the extra
structure of "restrictions," which model identity maps on partial domains.
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Definition 3.1.12 (Restriction category [26, Definition 2.1.1]). A restriction structure on a category
C is an assignment of a restriction idempotent1 f̂ : X Ñ X for each morphism f : X Ñ Y that that
satisfies the following axioms.

R.1 ff̂ “ f for all f.

R.2 f̂ĝ “ ĝf̂ for all arrows f,g with the same source.

R.3 x

gpf “ ĝf̂ for all arrows f,g with the same source.

R.4 ĝf “ f ˝ ypgfq for all composable pairs of arrows.

We call a pair pC, yp´qq of a category and a restriction structure a restriction category.

The intended interpretation of a restriction structure is that f : X Ñ Y is a partial function with
domain-of-definition Dompfq Ď X, and the restriction idempotent f̂ : X Ñ X is the identity map
idX : x Ñ x with domain DompidXq “ Dompfq.

Proposition 3.1.13. Let A :“ pA, DompAqq : pX,Vq Ñ pY,Wq be a morphism in CoreHilb0,k. The
assignment pA “ pIX, DompAqq defines a restriction structure on CoreHilb0,k.

Proof. This is a straightforward computation of partial maps. For example, R.1 is confirmed by
observing pA, DompAqq ˝ pIX, DompAqq “ pA, DompAqq. The other properties are similar.

Remark 3.1.14. Hilb0,k and DenseCoreHilb0,k are also restriction categories with the same re-
striction. This is witnessed by their inclusions into CoreHilb0,k, and the fact that DompÂq “

DompAq. In this section, we will mostly work with CoreHilb0,k, as all results will similarly apply
to Hilb0,k and DenseCoreHilb0,k by their inclusions into CoreHilb0,k as subcategories.

Definition 3.1.15. A morphism f : X Ñ Y in a restriction category C is total if f̂ “ idX.

In CoreHilb0,k, the total morphisms are exactly those morphisms that are globally defined.
The total maps in C define a wide subcategory TotalpCq Ď C.

Remark 3.1.16. Every restriction category C can be viewed as a 2-category in the following way.
The 0-cells and 1-cells are exactly the objects and morphisms of C. If f,g : X Ñ Y are parallel
morphisms in C, there is a unique 2-cell F : f ñ g if and only if f “ gf̂. That is, exactly when f is
a restriction of g to a smaller partial domain.

Restriction categories come equipped with a notion of a restriction limit, which is a limit-like
construction in the corresponding 2-categories.

1 The restriction idempotent of a morphism f is usually denoted by f. We use f̂ to disambiguate from the closure of an
operator.
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Definition 3.1.17 (Restriction limit [28, Section 4.4]). Let C be a restriction category, and J a
diagram. The restriction limit of a functor F : J Ñ C is a cone pJ : L Ñ FpJq with total legs
that satisfies the following universal property. If qJ : M Ñ FpJq is a lax cone over F (meaning
for all f : I Ñ J in J, Fpfq ˝ qI “ qJ ˝ {pFpfq qIq), there is a unique arrow ϕ : M Ñ L satisfying
pJ ˝ϕ “ qJ ˝ e, where e is the composite of all restriction idempotents xqJ.

Notation 3.1.18. When working in a restriction category C, we will use reslim F to denote the
restriction limit of a functor F : J Ñ C.

Example 3.1.19. The pullback-like square constructed in Example 3.1.10 is a restriction limit
in Hilb0,k. In particular, the arrow ϕ : H Ñ K defined by ϕphq “ pαphq,βphqq with domain
Dompαq X Dompβq satisfies πYϕ “ αα̂β̂ and πXϕ “ βα̂β̂.

Remark 3.1.20. We make a few remarks about restriction limits.

1. Restriction limits admit a natural interpretation as 2-categorical limits, where the triangles

M

L FpJq

ϕ
qJ

pJ

λ

commute up to a not-necessarily-invertible 2-cell λ.

2. By the universal property of restriction limits, when a functor F : J Ñ C admits a restriction
limit, the restriction limit is unique up to isomorphism.

3. When the functor F : J Ñ C is valued in TotalpCq, the restriction limit of F in C is an honest
limit in TotalpCq.

Theorem 3.1.21. CoreHilb0,k admits all finite restriction limits.

Proof. Every restriction idempotent f̂ in CoreHilb0,k admits a section s and a retract r. Moreover, f̂
can be uniquely determined from the data of the section s or the retract r. This makes CoreHilb0,k

a split retraction category [26, Section 2.3.3].
Next, TotalpCoreHilb0,kq has a terminal object given by p0, 0q, and admits all pullbacks by a

similar construction to that in Example 3.1.10. Thus TotalpCoreHilb0,kq admits all finite limits
[84]. By [28, Proposition 4.12], CoreHilb0,k admits all finite restriction limits.

Corollary 3.1.22. Hilb0,k and DenseCoreHilb0,k admit all finite restriction limits.

Remark 3.1.23. Finite restriction limits in CoreHilb0,k can be constructed in a manner similar to
the restriction pullback in Example 3.1.10. Given a finite diagram F : J Ñ CoreHilb0,k, say that
x “ pxJq P

À

JPJ FpJq is F-admissible if the following conditions hold.
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(i) For all morphisms f : J Ñ K in J, the coordinate xJ P DompFpfqq.

(ii) For all morphisms f : J Ñ K in J, we have FpfqpxJq “ xK.

Let L Ď
À

JPJ FpJq denote the collection of all F-admissible points. The zero section is always
F-admissible, so L is a linear subspace of the Hilbert space

À

JPJ FpJq, and its closure L is a sub-
Hilbert space. Moreover, L forms a cone over FpJq with globally defined legs pJ : pL,Lq Ñ FpJq

given by coordinate projections. This is easily seen to be a restriction limit. Moreover, since L will
be dense in L, this construction of the restriction limit restricts to DenseCoreHilb0,k. Pushing
through the forgetful functor U : CoreHilb0,k Ñ Hilb0,k generates restriction limits in Hilb0,k as
well.

3.1.3 Additivity in restriction categories

We now briefly discuss additivity in restriction categories. While Hilb0,k is not abelian (or even
pre-additive category), unbounded operators have a clear additive structure sufficient for some
homological algebra. Given parallel arrowsA,B : X Ñ Y, we may define an operator sum pA`Bq :

x ÞÑ Ax`Bxwith domain DompAq X DompBq. This sum operation gives the homset Hilb0,kpX, Yq

the structure of a commutative monoid. Moreover, this monoid admits a weak notion of an
additive inverse; for every operator A there is an operator p´Aq such that A` p´Aq “ 0 with
domain DompAq. This gives Hilb0,kpX, Yq the structure of an abelian Clifford semigroup [25],
which form a subclass of inverse semigroups in the sense of Wagner [122] and Preston [98].

Definition 3.1.24. An inverse semigroup is a semigroup pS, ¨q such that for all x P S, there is a
unique x´1 P S such that x “ xx´1x and x´1 “ x´1xx´1. An inverse semigroup is a Clifford
semigroup if every element x P S is in a subgroup of the semigroup.

Remark 3.1.25. Composition of linear operators does not give the homset Hilb0,kpX, Yq the struc-
ture of a Clifford semiring. In general, the operators CpA`Bq and CA`CB do not have the same
domain.

We now discuss additivity in a general restriction category C. For an object X P C, let DpXq

denote the set of restriction idempotents on X. DpXq admits the structure of a meet semilattice
with order e ĺ f ðñ ef “ fe “ e and meet e^ f “ ef “ fe.

Definition 3.1.26. Let A : X Ñ Y be a morphism in a restriction category C. A corestriction of A
is a restriction idempotent Ǎ P DpYq such that ǍA “ A, and if e P DpYq is a restriction idempotent
such that eA “ A, then Ǎ ĺ e.

We characterize a few properties of the lattices DpXq and coresetrictions with the following
lemma.

58



Lemma 3.1.27. Let C be a restriction category. The following properties hold.

(i) For a composable pair of arrows BA, xBA ĺ Â.

(ii) For a composable pair of arrows BA, if B̂A “ A, then xBA “ Â.

(iii) A morphism A : X Ñ Y admits a corestriction if and only if
Ź

te P DpYq : eA “ Au exists. In par-
ticular, if the semilattice DpXq is meet-complete for all X P C, then all morphisms admit corestrictions.

Proof. Let C be a restriction category.

(i) From the axioms of a restriction category, we compute xBAÂ “
z

BAÂ “ xBA. Therefore
xBA ĺ Â.

(ii) A “ B̂A “ AxBA, from which we conclude Â “
z

A
x

xBA “ ÂxBA. From (i), we recover xBA “ Â.

(iii) This follows directly from the definitions of meets and corestrictions.

Definition 3.1.28. Let C be a restriction category. The domain category of C, denoted Ĉ, consists
of the following data.

• Objects. Each object of Ĉ is a pair pX, eq of an object X P C and a restriction idempotent
e P DpXq.

• Morphisms. A morphism A : pX, eq Ñ pY, fq is a C-morphism A : X Ñ Y such that Â “ e

and fA “ A.

• Composition. The composition pX, eq A−Ñ pY, fq B−Ñ pZ,gq is given by the composition BA in
C. This composition is well-defined by Lemma 3.1.27.

Remark 3.1.29. The domain category Ĉ is not a restriction category. Instead, the partial domain
data is packaged into the objects directly. Moreover, the structure of morphisms in Ĉ allows us to
only compose arrows that compose properly.

The presence of restriction limits in C guarantees the existence of certain classical limits and
colimits in Ĉ. This correspondence is mediated by the following forgetful functor.

Definition 3.1.30. Let U : Ĉ Ñ C denote the functor which acts by

U
´

pX, eq A−Ñ pY, fq
¯

:“ X
A−Ñ Y.

Proposition 3.1.31. Let F : J Ñ Ĉ be a finite diagram in Ĉ. If UF admits a restriction limit in C, then F
admits a limit in Ĉ.
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Proof. Let pJ : L Ñ UFpJq denote the restriction limiting cone in C. Let ℓ P DpLq denote the re-
striction idempotent obtained by composing every restriction idempotent of the form {UFpαq ˝ pJ,
where α : J Ñ J 1 is a J-morphism. Consider the cone qJ : pL, ℓq Ñ FpJq with legs qJ “ pJℓ.
Given another cone rJ : pM,mq Ñ FpJq in Ĉ, there is a is a lift to a cone RJ : M Ñ UFpJq in C

with the same legs. There is a unique C-morphism ϕ : M Ñ L such that pJϕ “ RJm. The map
ℓϕ : pM,mq Ñ pL, ℓq witnesses that rJ : pM,mq Ñ FpJq is a limiting cone.

Corollary 3.1.32. If C is finitely restriction complete, then Ĉ is finitely complete. If C is restriction complete
and each semilattice DpXq is meet-complete, then Ĉ is complete.

Example 3.1.33. The domain category zHilb0,k has pairs pX,Vq of a Hilbert space X and a linear
subspace V Ď X for objects. A morphism A : pX,Vq Ñ pY,Wq in zHilb0,k is a linear map A : X Ñ Y

with domain DompAq “ V and a range containment RpAq Ď W. The domain category zHilb0,k

is a wide subcategory of CoreHilb0,k. Moreover, this category is easily seen to be categorically
equivalent to the category of k-vector spaces.

Definition 3.1.34. A restriction pre-additive category consists of the following data.

• A restriction category C.

• All morphisms admit corestrictions.

• Each collection of restriction idempotents DpXq forms a lattice.

• Each homset CpX, Yq admits the structure of an abelian Clifford semigroup.

We require that the following conditions hold.

(i) For each pair of parallel morphisms A,B : X Ñ Y, the sum has restriction idempotent
{A`B “ Â^ B̂ “ ÂB̂ and corestriction ­A`B “ Ǎ_ B̌.

(ii) For parallel morphisms A,B : X Ñ Y and C : Y Ñ Z, if Ǎ, B̌ ĺ Ĉ, then CpA`Bq “ CA`CB.

(iii) For parallel morphisms A,B : Y Ñ Z and C : X Ñ Y, if Č ĺ Â^ B̂, then pA`BqC “ AC`BC.

Proposition 3.1.35. If C is a restriction pre-additive category, the domain category Ĉ is pre-additive.

Proof. SinceA “ A` p´Aq `A, condition (i) enforces that Â “ Â^ zp´Aq, and therefore Â “ zp´Aq.
Similarly, Ǎ “ ~p´Aq. In an abelian inverse semigroup, every additive idempotent α satisfies
α “ ´α. Hence every additive idempotent can be written as A` p´Aq for some A P CpX, Yq.
Given an idempotent α, it follows straightforwardly that A` p´Aq “ α if and only if Â “ α̂.
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The collection Gα :“ tA P CpX, Yq : A` p´Aq “ αu forms an abelian subgroup of CpX, Yq with
identity α. Moreover, we may write

Gα “ tA P CpX, Yq : Â “ α̂u

“ Ĉ
`

pX, α̂q, pY, idYq
˘

.

Let Ĉ
`

pX, eq, pY, fq
˘

be a homset in the domain category. Given parallel morphisms A,B : pX, eq Ñ

pY, fq, we have {A`B “ Â^ B̂ “ e, and ­A`B “ Ǎ_ B̌ ĺ f. Therefore Ĉ
`

pX, eq, pY, fq
˘

is closed
sums. Moreover, this homset is closed under inverses as e “ zp´Aq and ~p´Aq ĺ f. Therefore
Ĉ
`

pX, eq, pY, fq
˘

is an abelian subgroup of Ĉ
`

pX, eq, pY, idYq
˘

. The distributivity conditions (ii) and
(iii) ensure that composition is bilinear.

Definition 3.1.36. A weak restriction zero-object in a restriction category C is an object 0 with
the following properties.

(i) 0 is restriction terminal [28, Section 4.1]; for every object A there is a total arrow tA : A Ñ 0

such that t0 “ id0 and tBf “ tAf̂ for all f : A Ñ B.

(ii) 0 is initial in C; for each X, there is a unique total morphism !X : 0 Ñ X.

(iii) The zero-morphism 0XY : X Ñ Y is the map 0X,Y “!YtX. For each object X, we require
y0XX “ 0XX.

Remark 3.1.37. Zero morphisms are not annihilative on the left. Given a map g : X Ñ Y, the
composition 0YZg “ 0XZĝ, which need not be total.

Definition 3.1.38. Let X and Y be objects in a restriction pre-additive category C. A binary re-
striction biproduct of X and Y is an object X‘ Y and a collection of four total maps

ιX : X Ñ X‘ Y, ιY : Y Ñ X‘ Y, πX : X‘ Y Ñ X, πY : X‘ Y Ñ Y

such that the following conditions hold.

(i) Restriction product. X‘ Y, equipped with its projection maps πX and πY , is a restriction
product; for maps A : Z Ñ X and B : Z Ñ Y there is a unique map xA,By : Z Ñ X‘ Y such
that AB̂ “ πXxA,By, BÂ “ πYxA,By, and {xA,By “ ÂB̂.

(ii) Weak restriction coproduct. X‘ Y, equipped with its inclusion maps ιX and ιY , is a weak
restriction coproduct2; for any maps A : X Ñ Z and B : Y Ñ Z, there is a unique morphism

2 We say "weak" to differentiate from Cockett and Lack’s notion of a restriction coproduct [28], which is simply a
coproduct.
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rA,Bs : X‘ Y Ñ Z such that rA,BsιX “ A and rA,BsιY “ B, and the restriction rA,Bs is
controlled componentwise:

{rA,BsιX “ ιXÂ, {rA,BsιY “ ιYB̂.

(iii) Biproduct equations. We require that the following equations hold:

πXιX “ idX, πYιY “ idY , πXιY “ 0YX, πYιX “ 0XY .

We additionally require that ιXπX ` ιYπY “ idX‘Y .

Theorem 3.1.39. Let C be a restriction pre-additive category. If C has a weak restriction zero-object and
admits all binary restriction biproducts, then Ĉ is additive.

Proof. First, we show that Ĉ admits a zero object. Let 0 be the restriction zero-object in C. Since
0 is initial in C, id0 : 0 Ñ 0 is the unique restriction idempotent in Dp0q. For each X P C and
restriction idempotent e P DpXq, e˝! “!, where ! : 0 Ñ X is the unique morphism from 0 to X.
Therefore there is a unique morphism ! : p0, id0q Ñ pX, eq in Ĉ, and p0, id0q is initial. Meanwhile,
Proposition 3.1.31 ensures that p0, id0q is terminal in Ĉ.

Next, we show that Ĉ admits binary biproducts. Let pX, eq and pY, fq be objects in Ĉ. The
morphism e‘ f :“ ιXeπX ` ιYfπY is restriction idempotent on X‘ Y. We claim pX‘ Y, e‘ fq is a
biproduct in Ĉ. By the Proposition 3.1.31, pX‘ Y, e‘ fq is a product. To check that pX‘ Y, e‘ fq

is a coproduct, let A : pX, eq Ñ pZ,gq and B : pY, fq Ñ pZ,gq. Any map ϕ : pX‘ Y, e‘ fq Ñ pZ,gq

such that ϕιX “ A and ϕιY “ B lifts to a morphism ϕ : X‘ Y Ñ Z in C that satisfies the universal
property of the weak restriction coproduct. Moreover, the map rA,Bs : X‘ Y Ñ Z defines a map
rA,Bs : pX‘ Y, e‘ fq Ñ pZ,gq that satisfies the universal property of the coproduct. Therefore
pX‘ Y, e‘ fq is a coproduct. Finally, the biproduct equations hold by the construction of e‘ f.
Therefore Ĉ admits all finite biproducts.

Since Ĉ is pre-additive by Proposition 3.1.35 and admits all finite biproducts, Ĉ is additive.

3.2 hilbert complexes

As seen in section 1.4.5, a cellular sheaf valued in an Abelian category naturally induces a cochain
complex. Since Hilbk is quasi-abelian, it is straightforward to port results to cellular sheaves val-
ued in Hilbert spaces and bounded operators. However, to generalize to unbounded partially
defined operators, which do not form a quasi-abelian category, requires more care. We now dis-
cuss the theory of Hilbert complexes: a class of sufficiently well behaved cochain complexes
of Hilbert spaces with unbounded coboundary maps. Hilbert complexes were introduced by
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Brüning and Lesch [17] to study elliptic complexes and de Rahm cohomology. Since their intro-
duction, Hilbert complexes have proved invaluable for studying partial differential equations [95,
96], finite-element exterior calculus [8, 65], and more.

Definition 3.2.1. A Hilbert complex pX‚,V‚, δ‚q is the data of a family of Hilbert space operators
tδj : Xj Ñ Xj`1ujPN with Dompδjq “ Vj, such that the following conditions hold.

(i) Each operator δj is closed and densely defined.

(ii) Rpδjq Ď Vj`1 for all j.

(iii) δj`1δjpxq “ 0 for all j and all x P Vj.

Notation 3.2.2. Despite the domain conditions, we will frequently abbreviate the Hilbert complex
pX‚,V‚, δ‚q to X‚, and draw the Hilbert complex as

X0
δ0−Ñ X1

δ1−Ñ ¨ ¨ ¨ .

We say a Hilbert complex is finite if Xj “ 0 for all j sufficiently large. We say that a Hilbert
complex is bounded if each map δj is a globally-defined bounded operator. For clarity, we adopt
the convention that X´1 “ 0, and δ´1 is the zero-map.

3.2.1 The Hodge decomposition

While not a cochain complex in an Abelian category, Hilbert complexes give enough structure to
recover analogues of key results like Hodge decompositions, cohomology groups, and Laplacians.
However, care must be taken to accommodate the fact that domains V‚ and ranges R‚ :“ Rpδ‚q

need not be closed linear subspaces.

Definition 3.2.3. Let pX‚,V‚, δ‚q be a Hilbert complex. A k-cocycle is a point in the kernel x P

kerpδkq. We use ZkpX‚q :“ kerpδkq to refer to the Hilbert space of k-cocycles. Similarly, a k-
coboundary is a point in the image y P Rpδk´1q. We use BkpX‚q to refer to the space of k-
coboundaries. Finally, let BkK denote the orthogonal complement of Bk in Xk. A point x P Xk is
k-harmonic if x P BkK X Zk. We let HkpX‚q denote the k-harmonic space.

Notation 3.2.4. When the Hilbert complex is clear from context, we reduce the notation to Zk,
Bk, and Hk.

Remark 3.2.5. Since the kernel of a closed operator is closed, Zk is closed, and hence a Hilbert
space. Similarly, Hk is a Hilbert space as the intersection of two closed subspaces. Bk, on the
other hand, is only a linear subspace in general. When Bk is closed for all k, we say that the
Hilbert complex pX‚,V‚, δ‚q is closed.
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In a Hilbert complex, we get a decomposition of each Xk in terms of the spaces of cobound-
aries, cocycles, and harmonic points. In particular, we may use the properties of direct sums and
orthogonal complements to compute:

Xk “ Zk ‘ ZkK

“
“

Zk X pBk ‘ BkKq
‰

‘ ZkK

“ pZk X Bkq ‘ pZk X BkKq ‘ ZkK

“ Bk ‘ Hk ‘ ZkK.

This resulting decomposition Xk “ Bk ‘ Hk ‘ ZkK is known as the weak Hodge decomposition
of Xk. When Bk is closed, we recover the strong Hodge decomposition Xk “ Bk ‘ Hk ‘ ZkK.

3.2.2 Morphisms and the domain complex

Care must be taken with domains to define morphisms of Hilbert complexes as chain maps.
In order to commute, we require that the chain maps respect the domains of the coboundary
operators of the Hilbert complexes.

Definition 3.2.6. Let pX‚,V‚, δ‚
Xq and pY‚,W‚, δ‚

Yq be Hilbert complexes. A morphism

f‚ : pX‚,V‚, δ‚
Xq Ñ pY‚,W‚, δ‚

Yq

is a family of bounded, globally defined operators fk : Xk Ñ Yk that satisfy the following
conditions.

(i) fkpDompδkXqq Ď DompδkYq for all k.

(ii) δkYf
kx “ fk`1δk`1

X x for all x P DompδkXq.

Hilbert complexes and Hilbert complex morphisms form a category, HilbComp
k

. For some
homological algebra, Hilbert complex morphisms are not adequately structured. Diagram chases,
like those of the five and snake lemmas, cannot be performed; lifts of elements by the components
of a Hilbert complex morphism may fail to lie inside the domain of the coboundary operators.
To mitigate these difficulties, we introduce the domain complex.

Definition 3.2.7. The domain complex of a Hilbert complex pX‚,V‚, δ‚
Xq is the Hilbert complex

pV‚,V‚, δ‚q, where the domain Vk is a Hilbert space with the graph inner product

xx,yyΓ pδkq “ xx,yyXk ` xδkx, δkyyXk`1 .
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It is straightforward to verify that the domain complex of a Hilbert complex is a well-defined
bounded Hilbert complex. Moreover, a Hilbert complex morphism f‚ : pX‚,V‚, δ‚

Xq Ñ pY‚,W‚, δ‚
Yq

induces a morphism of the domain complexes f‚
∣∣
V‚ : pV‚,V‚, δ‚

Xq Ñ pW‚,W‚, δ‚
Yq. By imposing

conditions on both Hilbert complex morphisms and their induced morphisms between domain
complexes, key results of homological algebra may be recovered through the following adapta-
tion of "exactness".

Definition 3.2.8. Let pX,VXq
f−Ñ pY,VYq

g−Ñ pZ,VZq denote a sequence of Hilbert spaces X, Y,Z
containing linear subspaces VX,VY ,VZ respectively, and bounded globally defined operators f :
X Ñ Y and g : Y Ñ Z such that fpVXq Ď VY , and gpVYq Ď VZ. This sequence of maps is exact at Y
if Rpfq “ kerpgq. The sequence is pair exact at pY,VYq if it is exact at Y, and Rpf

∣∣
VX

q “ kerpg
∣∣
VY

q.
That is, the pair pf,gq is algebraically exact on both the full Hilbert spaces, and on the underlying
linear subspaces.

This definition of exactness may be lifted to morphisms of Hilbert complexes by requiring
exactness gradewise.

Definition 3.2.9. Let pX‚,V‚
X, δ‚

Xq
f‚

−Ñ pY‚,V‚
Y , δ‚

Yq
g‚

−Ñ pZ‚,V‚
Z, δ‚

Zq be a composable pair of Hilbert

complex morphisms. This sequence of maps is exact at pY‚,V‚
Y , δ‚

Yq if pXk,VkXq
fk−Ñ pYk,VkY q

gk−Ñ

pZk,VkZq is pair exact in each grade k.

3.2.3 Cohomology of Hilbert complexes

Hilbert complexes also come equipped with a notion of cohomology.

Definition 3.2.10. Let pX‚,V‚, δ‚q be a Hilbert complex. The kth-reduced cohomology of the
Hilbert complex is the Hilbert space quotient Hk :“ Zk{Bk. When Bk is closed (δk´1 has closed
range), we call Zk{Bk “ Zk{Bk the kth-cohomology.

The kth-reduced cohomology always carries a Hilbert space structure as a quotient of Hilbert
spaces. Moreover, we have the following relationship between the kth-reduced cohomology and
the kth-harmonic space.

Theorem 3.2.11. Let pX‚,V‚, δ‚q be a Hilbert complex. There is a natural unitary equivalence Hk – Hk.

Proof. Hk “ Zk X BkK is a closed subspace of Zk. Let P : Zk Ñ Hk denote the orthogonal
projection onto the k-harmonic space. P induces a unitary isomorphism P̂ : Hk Ñ Hk.

Unfortunately, one cannot easily derive an "honest" cohomology theory for an arbitrary Hilbert
complex. As discussed in Section 3.1, the category Hilbk is not an abelian category. In particular,
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if Bk isn’t closed, the kth-cohomology Zk{Bk will not be a Hilbert space, but merely a vector
space. This vector space is well defined, of course, but ceases to hold an obvious interpretation
for the Hilbert complex. Further, even if each Bk is closed and all cohomologies exist as Hilbert
spaces, it can still be difficult to interpret. For example, since each Hk may be an infinite dimen-
sional Hilbert space, standard interpretations in terms of Betti numbers are not applicable.

One approach to interpreting the cohomology is through obstructions via exact sequences.
While the homological algebra of Hilbert complexes is well-studied for the de Rahm complex [7,
36], the general homological algebra of Hilbert is comparatively understudied [49].

Lemma 3.2.12 (Snake lemma for Hilbert complexes). Suppose we have a commutative diagram of
Hilbert spaces

kerpAq kerpBq kerpCq

X Y Z 0

0 X 1 Y 1 Z 1

X 1{RpAq Y 1{RpBq Z 1{RpCq

f

A

g

B C

f 1 g 1

with morphisms in the top row given by restriction of f and g to the kernels of A and B, and morphisms in
the bottom row given by rx 1s ÞÑ rf 1x 1s and ry 1s ÞÑ rg 1y 1s. Further suppose that the rows pX, DompAqq

f−Ñ
pY, DompBqq

g−Ñ pZ, DompCqq
0−Ñ p0, 0q and 0 0−Ñ X 1 f

1

−Ñ Y 1 g
1

−Ñ Z 1 are pair exact and exact respectively,
and each operator A,B,C is closed and densely-defined. There is a bounded globally-defined connecting
morphism d forming a bounded Hilbert complex

kerpAq kerpBq kerpCq X 1{RpAq Y 1{RpBq Z 1{RpCq
d .

This sequence is always exact at kerpBq. Moreover, the following hold.

(i) If A has closed range, the sequence is exact at kerpCq.

(ii) If B has closed range, the sequence is exact at X 1{RpBq.

(iii) If C has closed range, the sequence is exact at Y 1{RpBq.

Proof. The maps of the top and bottom row are all bounded and globally defined, and exactness
at kerpBq is automatic. To construct the map d, we perform the usual diagram chase of the snake
lemma; for z P kerpCq, since g

∣∣
DompBq

is a surjection, there is a y P DompBq such that gy “ z. Since
z P kerpCq, we recover that By P kerpg 1q, and hence there is a unique x 1 P X 1 such that f 1x 1 “ By 1.
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Denote this point x 1 by d0pyq, as it only depended on our choice of y. We define dpzq :“ rx 1s.
To check d is well defined, notice that d only depended on our choice of y P DompBq such that
gy “ z. Take ỹ P DompBq to be a second such choice, and x̃ 1 “ d0pỹq to be the corresponding
point in X 1. Consider the difference w “ y´ ỹ. The point Bw is still in the kernel of g 1, so x 1 ´ x̃ 1

is the unique point in X 1 mapped to Bw by f 1. w is in the linear space kerpgq X DompBq, so there
is an α P DompAq such that fα “ w. By the injectivity of f 1, we recover Aα “ x 1 ´ x̃ 1, proving
x´ x 1 P RpAq Ď RpAq. Therefore d : kerpCq Ñ X 1{RpAq is globally well-defined.

Now we check that d gives the structure of a Hilbert complex. Suppose k P kerpBq. To check
that gk P kerpdq, it suffices to notice that d0pkq “ 0. Additionally, for z P kerpCq and a choice of
y P DompBq such such that gy “ z, we may check that rfpd0pyqqs “ rBys “ r0s in Y 1{RpBq.

To confirm that d is bounded, recognize that g : DompBq Ñ kerpCq admits a bounded right
inverse when DompBq is topologized with the graph norm of B, and f 1 : X 1 Ñ Rpf 1q “ kerpg 1q

admits a bounded inverse when Rpf 1q is topologized as a sub-Hilbert space of Y 1. The map
d : kerpCq Ñ X 1{RpA 1q may be written as the composition of bounded operators

kerpCq DompBq kerpg 1q X 1 X 1{RpA 1q
g´1 B

∣∣∣
g´1pkerpCqq pf 1q´1

π ,

which proves d is bounded.
Finally, in the case that RpAq, RpBq and RpCq are respectively closed, these maps align with the

usual snake lemma in vector spaces, yielding exactness at the corresponding locations.

Remark 3.2.13. This version of the snake lemma for Hilbert complexes is stronger than the ver-
sion from the abelian category structure of the domain category zHilb0,k. In the domain category,
the topological quotient X 1{RpAq lacks a categorical interpretation. However, when all maps have
closed range, the algebraic and topological quotients agree, and the snake lemma provides the
same exact sequence.

We may now use the snake lemma to provide an interpretation for higher cohomologies like
H1 for closed Hilbert complexes. Suppressing the domains and coboundary maps for notational
ease, let X‚, Y‚, and Z‚ be closed Hilbert complexes. Suppose we have a short exact sequence of
complexes

0 Ñ X‚ f‚

−Ñ Y‚ g‚

−Ñ Z‚ Ñ 0.

Applying the snake lemma gives a long exact sequence

H0pX‚q H0pY‚q H0pZ‚q H1pX‚q H2pY‚q ¨ ¨ ¨ .
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The connecting homomorphism d : H0pZ‚q Ñ H1pY‚q can now be interpreted as the obstruction
to lifting a 0-cocycle in Z‚ to a 0-cocycle in Y‚. In particular, every 0-cocycle z0 P Z0 has a
preimage y0 P Y0 under g0. In general, y0 will not be a cocycle, but its image y1 “ δ0Yy

0 will
live in the kernel kerpg1q. By exactness, there is a unique x1 P X1 such that f1x1 “ y1. Moreover,
drz0s “ rx1s P H1pX‚q, showing that the obstruction to y0 being a cocycle lives in H1pX‚q. The
other cohomology groups HkpX‚q can be interpreted in a similar manner.

3.2.4 Subcomplexes and relative cohomology

Definition 3.2.14. Recall that a morphism of Hilbert complexes f‚ : X‚ Ñ Y‚ is a collection of
globally-defined bounded Hilbert space morphisms fk : Xk Ñ Yk such that fkpVkq Ď Wk and
the following diagram commutes (with respect to the domain of δ‚

X).

¨ ¨ ¨ Xk Xk`1 ¨ ¨ ¨

¨ ¨ ¨ Yk Yk`1 ¨ ¨ ¨

δkX

fk fk`1

δkY

When each component ιk of a Hilbert complex morphism ι‚ : X‚ Ñ Y‚ is an inclusion of a
sub-Hilbert space, we say that pX‚,V‚, δ‚

Xq is a subcomplex of pY‚,W‚, δ‚
Yq.

Subcomplexes allow us to define the relative cohomology of the Hilbert complex. Suppose
pX‚,V‚, δ‚

Xq is a subcomplex of pY‚,W‚, δ‚
Yq. Each Xk is a sub-Hilbert space of Yk, and we may

form a Hilbert space quotient Yk{Xk. The correspondence δkY{X : Yk{Xk Ñ Yk`1{Xk`1 defined
by δkY{X : rys ÞÑ rδkYys has domain Dk “ trys P Yk{Xk : y P Wku induces the relative Hilbert
complex

¨ ¨ ¨ Yk{Xk Yk`1{Xk`1 ¨ ¨ ¨
δkY{X

.

The relative (reduced) homology of Y‚ with respect to X‚ is the (reduced) homology of this
complex, denoted H‚pY‚,X‚q.

By Theorem 3.2.11, there is a unitary equivalence between the kth-reduced homology of the
relative Hilbert complex and the kth-relative harmonic space HkpY‚,X‚q – HkpY‚,X‚q. By the
identification of Yk{Xk – XkK, the relative harmonic space HkpY‚,X‚q can be identified with the
harmonic points y P HkpY‚q such that y P XkK. That is, HkpY‚,X‚q is the collection of harmonic
points in Yk that vanish on Xk.
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3.2.5 The Hodge Laplacian

As a cochain complex, a Hilbert complex admits a Hodge Laplacian. This Laplacian (and its
associated Dirichlet problem) has been well-studied [8, 65], and has recently been linked to a
variety of coupling problems in physics [14]. To define the Hodge Laplacian, we begin with the
dual complex of a Hilbert complex.

Definition 3.2.15. The dual complex of a Hilbert complex is chain complex obtained by reversing
arrows via adjoints. We denote the dual complex by pX‚,V˚

‚ ,d‚q, where Xk :“ Xk, and dk :“

pδk´1q˚ with domain V˚
k Ď Xk. Hence the dual complex is a Hilbert complex (with descending

indices)
X0

d1
Ð− X1

d2
Ð− ¨ ¨ ¨ .

Remark 3.2.16. Due to the decreasing indexing, the dual complex to a Hilbert complex is a chain
complex instead of cochain complex. For finite Hilbert complexes, this difference is inconsequen-
tial, but the change is significant for infinite complexes. Moreover, the dual complex to a bounded
Hilbert complex is always bounded, and the dual complex to a closed complex is always closed
by the closed range theorem (Theorem 2.3.15).

Definition 3.2.17. Let pX‚,V‚, δ‚q be a Hilbert complex. The Hodge Laplacian of X‚ is the chain
operator L :“ δd` dδ with graded components given by

Lk :“ δk´1dk ` dk`1δ
k.

This is a (generically) unbounded operator with domain

DompLkq “ tx P Vk X V˚
k : dkx P Vk´1 and δkx P V˚

k`1u.

Notation 3.2.18. We write the Hodge Laplacian the sum L “ L` ` L´ of the up Laplacian
Lk` :“ dk`1δ

k and down Laplacian Lk´ :“ δk´1dk.

Theorem 3.2.19. The kernel of the Hodge Laplacian is the harmonic space. That is, kerpLkq “ Hk.

Proof. Each coboundary map is closed, and we may identify BkK “ kerpdkq. Consequently Hk “

kerpdkq X kerpδkq, from which it follows that Hk Ď kerpLkq.
To prove the reverse inclusion, consider the up Laplacian and the down Laplacian separately.

We may check that both Rpdkq K kerpδk´1q and Rpδkq K kerpdk`1q, which forces kerpLk´q “

kerpdkq and kerpLk`q “ kerpδkq. Moreover, the orthogonality of the weak Hodge decomposition
witnesses that Rpδk´1q K Rpdk`1q, and consequently that RpLk´q K RpLk`q. Therefore the kernel
of Lk “ Lk´ ` Lk` is exactly the intersection kerpdkq X kerpδkq “ Hk.
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We immediately obtain the following corollary for the grade-zero Laplacian.

Corollary 3.2.20. The kernel of L0 is exactly the kernel of δ0.

Theorem 3.2.21. The Hodge Laplacian Lk is a positive operator.

Proof. Consider the block operator
”

δk´1 dk`1

ı

: Xk´1 ‘ Xk`1 Ñ Xk. This block operator is

closed and has dense domain Vk´1 ‘ V˚
k`1. To verify this, suppose that pxn,ynq P Vk´1 ‘ V˚

k`1

is a sequence of points in the domain such that pxn,ynq Ñ px,yq P Xk´1 ‘ Xk`1, and δk´1xn `

dk`1yn Ñ z in Xk. Since Rpδk´1q Ď kerpδkq, and kerpδkq K Rpdk`1q, it follows that δk´1xn Ñ z1

and dk`1yn Ñ z2 separately in Xk. δk´1 and dk`1 are closed operators, so px,yq P Vk´1 ‘ V˚
k`1

and δk´1x` dk`1y “ z1 ` z2 “ z. Hence
”

δk´1 dk`1

ı

is closed.
Next, the following computation demonstrates that

”

δk´1 dk`1

ı˚

“

»

–

dk

δk

fi

fl

with domain V˚
k X Vk; for px,yq P Vk´1 ‘ V˚

k`1 and z P V˚
k X Vk:

A”

δk´1 dk`1

ı

px,yq, z
E

“
@

δk´1x, z
D

` xdk`1y, zy

“ xx,dkzy ` xy, δkzy

“

C

px,yq,

»

–

dk

δk

fi

fl z

G

.

By von Neumann’s Theorem (2.5.11), it follows that Lk “

”

δk´1 dk`1

ı ”

δk´1 dk`1

ı˚

is a
positive operator.

3.3 block operators of hilbert spaces

A fundamental aspect of finite-dimensional linear algebra is the ability to represent a linear map
between direct sums of vector spaces by a block matrix—a matrix whose entries are themselves
matrices encoding maps between the vector space summands. While block operators generalize
straightforwardly for bounded Hilbert space operators, the theory is more subtle for unbounded
operators [92, 117]. We highlight and develop a few key results for bounded and unbound block
operators.
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Let tXjujPJ be a family of Hilbert spaces with a possibly infinite index set J. The direct sum
X :“

À

jPJ Xj is the Hilbert space

#

x “ pxjqjPJ :
ÿ

jPJ

}xj}
2
Xj

ă 8

+

equipped with the inner product
xx, yyX :“

ÿ

jPJ

xxj,yjy.

For finite index sets J, the direct product is a categorical biproduct in Hilbk. However this is
not the case for infinite index sets; the direct sum fails to be either a product or a coproduct.
Nonetheless, for any summand Xj, one may factor the identity map Ij : Xj Ñ Xj as πj ˝ ιj, where
ιj : Xj ãÑ X is the inclusion of the j’th summand Xj as Xj ‘

À

j 1‰j 0, and πj : X Ñ Xj is the
projection x ÞÑ xj.

Let tXjujPJ and tYiuiPI be Hilbert spaces with finite index sets I, J, and let X :“
À

jPJ Xj and
Y :“

À

iPI Yi denote the direct sums. Given an operator A : X Ñ Y with domain V :“ DompAq, if
the domain V splits as V “

À

j Vj with Vj Ď Xj, there is an induced operator Aij : Xj Ñ Yi for
each pair pi, jq such that the following diagram commutes.

X Y

Xj Yi

A

πiιj

Aij

The domain of Aij may be taken to be Vij :“ Vj. The collection of operators Aij for i P I and
j P J constitutes a representation of A as a block operator

rAijsiPI,jPJ : X Ñ Y.

This block operator acts like matrix multiplication; given an input x P X, the image of rAijs on
i-component of Y is

pAxqi “
ÿ

jPJ

Aijxj.

The condition that the domain of A split over the summands of X is not always satisfied.
Consequently, not every unbounded operator A : X Ñ Y admits a representation as a block
operator. The converse process of assembling a collection of operators between summands into a
block operator also has has domain subtleties. Given Hilbert space operators Aij : Xj Ñ Yi, one
may always form a block operator rAijs. However, the domain on which rAijs may be defined can
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be arbitrarily small—possibly only t0u. This can even be the case for unbounded operators with
finite index sets I and J. Even when rAijs is a well-defined operator with a dense domain, it may
fail to have essential properties like being closed. This section is dedicated to exploring when
such block operators are well-defined Hilbert space operators, and when they are well behaved.

3.3.1 Finite block operators

We restrict our attention to finite block operators where I and J are finite index sets. Fix n,m P

Ně1, Hilbert spaces X “ X1 ‘ ¨ ¨ ¨ ‘Xm and Y “ Y1 ‘ ¨ ¨ ¨ ‘ Yn, and operators Aij : Xj Ñ Yi with
dense domain Vij Ď Xj. The theory of 2x2 block operators, their properties, and their spectra
have been well developed. For example, see [21, 48, 117], the last of which has applications to
mathematical physics, fluid dynamics, and quantum mechanics. Several of the results in this
section are generalizations of the work of Tretter [117].

When each block operator Aij is bounded and globally defined, the induced finite block oper-
ator is well-behaved.

Proposition 3.3.1. Suppose each Aij : Xj Ñ Yi is a globally-defined bounded Hilbert space operator. The
finite block operator A :“ rAijs has the following properties.

(i) A is globally-defined and bounded (and hence closed).

(ii) The linear adjoint of A is given by rAijs
˚ “ rA˚

jis.

(iii) The composition of such bounded finite block operators is given by matrix multiplication.

Proof. Using the Cauchy-Schwartz inequality and the triangle inequality, it can be shown directly
that the operator norm of A is bounded above by

}A}op ď

g

f

f

e

n
ÿ

i“1

m
ÿ

j“1

}Aij}2 ,

proving that A is bounded. Once working with a globally-defined bounded operator the other
results are direct computations.

When the Aij maps are unbounded and partially defined, analysis of block operators be-
comes substantially more complex. We first investigate the domain of definition. For a fixed
j P t1, . . . ,mu, the common core of the operators A1j, . . . ,Anj is the intersection Ṽj :“

Şn
i“1 Vij.

The maximal domain of definition for the block operator A “ rAijs is the direct sum
À

jPJ Ṽj Ď X.
Going forward, we will always take this to be the domain of a block operator rAijs over finite
index sets I, J unless otherwise stated. We get the following proposition for free.
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Proposition 3.3.2. The finite block operator rAijs is densely defined if and only if the collection of operators
tA1j, . . . ,Anju has a densely-defined common core for each j P J.

Remark 3.3.3. For globally-defined operators Aij (bounded or unbounded), the resulting finite
block operator rAijs is globally defined.

For the remainder of this section, we will always assume that A “ rAijs is densely defined.
Even when rAijs is known to be densely defined, unbounded block operators have subtleties
that must be navigated. We enumerate a few of those subtleties here.

1. If A is closable, the closure A need not admit a block operator structure.

2. Moreover, when A is closable, the adjoint A˚ ‰ rA˚
jis in general. The operator rA˚

jis, known
as the formal adjoint, need not even be densely defined when A is closable [91, Example
6.5].

3. Given block operators A “ rAijs : X Ñ Y and BrBkis : Y Ñ X, one may form a block
operator C “ rCkjs with Ckj “

ř

i BkiAij. This operator, defined with it’s maximal domain
is an extension BA Ď C. In general, these domains will not agree, and the containment will
be strict.

3.3.2 Closable and closed block operators

To determine when rAijs is closed or closable is more challenging. There is not a clear way to
provide necessary and sufficient conditions in terms of properties of the underlying Aij maps. In
particular, it is not the case that rAijs is closed (resp. closable) whenever each block Aij is closed
(resp. closable), as illustrated by the following example.

Example 3.3.4. Let A : ℓ2pN; Rq Ñ ℓ2pN; Rq be the operator defined by A
´

ř

j xjej

¯

“ p
ř

j jxjejq,

where ej is the jth standard basis element, with domain DompAq “ tx : Ax P ℓ2pN; Rqu. A is a
diagonal operator, and hence is closed. Consider the block operator

A :“
”

A ´A

ı

: ℓ2pN; Rq ‘ ℓ2pN; Rq Ñ ℓ2pN; Rq ,

with domain DompAq ‘ DompAq. Fix x “
ř

j
1
j ej P ℓ2pN; Rq where ej is the jth standard basis

element, , and let xn “
řn
j“1

1
j ej. Notice that pxn, xnqT Ñ px, xqT in ℓ2pN; Rq ‘ ℓ2pN; Rq, and

Apxn, xnq “ 0 for all n, forming a constant sequence. The limit px, xqT is not in the domain of A,
showing that A is not closed.
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The remainder of this section is dedicated to determining when a finite block operator is
closed or closable. We begin with two general purpose lemmas. A first way to force a finite block
operator A be closed is by controlling the graph norm.

Lemma 3.3.5. Suppose each Aij is a closed (resp. closable) operator. If there is a C ą 0 such that

n
ÿ

i“1

m
ÿ

j“1

}Aijxj}
2 ď C2}px, Axq}2Γ pAq

for all x P DompAq, then A “ rAijs is closed (resp. closable).

Proof. We prove the "closed" version of the lemma; the "closable" version is similar. Suppose
pxpnq, Axpnqq is a Cauchy sequence in the graph ΓpAq. Both xpnq and Axpnq are Cauchy in X

and Y respectively, and thus have limits x P X and y P Y respectively. By hypothesis, for each
i P I and j P J, the sequence Aijx

pnq

j is Cauchy in n, and converges to a yij P Yi. Moreover,

xj “ limnÑ8 x
pnq

j is in the domain Vij and satisfies Aijxj “ yij since Aij is closed. It follows that
x P DompAq and Ax “ y. Hence ΓpAq is complete and A is a closed operator.

Our second general lemma simplifies the problem by allowing us to check closedness row by
row.

Lemma 3.3.6. Let A “ rAijs : X Ñ Y be a finite block operator. Let Ri “

”

Ai1 ¨ ¨ ¨ Aim

ı

denote the

ith row of A. If each Ri : X Ñ Yi with domain DompRiq “ DompAi1q ‘ ¨ ¨ ¨ ‘ DompAimq is closed (resp.
closable), then A is closed (resp. closable).

Proof. Note that DompAq “
Ş

iDompRiq is contained in the domain of each row. Let xn Ñ 0

denote a convergent sequence sequence in DompAq such that Axn Ñ y. If Ri is closable, then the
ith coordinate yi “ 0. Therefore if each Ri is closable, then A is closable.

Similarly, let xn Ñ x denote a sequence in DompAq that converges to a point x P X, and
Axn “ y. If Ri is closed, then x P DompRiq, and Rix “ yi. Consequently, if each Ri is closed, then
A is closed.

Remark 3.3.7. Note that this results also holds if we take the domain of Ri to be DompAq.

Remark 3.3.8. If Ri is closable, then each block Aij of Ri is closable [91, Corollary 3.4]. It follows
that in order to apply this lemma, it is necessary (but not sufficient) that every entry of A is
closable. However, it is not the case that all blocks of a closable block operator are closable [91,
Remark 4.4].
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While these lemmas provide practical criteria to check if a block operator is closed or closable,
they do not provide any insight into how to pick blocks Aij such that rAijs is closed. Looking at
blocks, it is not obvious when the summability condition, nor row-wise closability are satisfied.
Thankfully, there are a variety of block-wise conditions under which we can ensure that the finite
block operator A is closed. One of the most simple involves having enough bounded operators
in the block operator.

Proposition 3.3.9. Let A “ rAijs be a finite block operator such that each row contains at most one
unbounded operator—all other entries are bounded and globally defined. If each unbounded operator is
closed (resp. closable), then A is closed (resp. closable).

Proof. Let xpnq be a sequence in DompAq such that xpnq Ñ x P X. Suppose ypnq :“ Axpnq Ñ y P Y.
For each row index i, let ji denote the column-index of the entry in the ith row that is unbounded.
For a fixed i we may write

y
pnq

i ´
ÿ

j‰ji

Aijx
pnq

j “ Aijix
pnq

ji
.

Taking the limit as n Ñ 8 on the left hand side yields yi ´
ř

j‰ji
Aijxj. On the right hand side,

since Aiji is closed, we recover xji P Viji . It follows that yi “
ř

jAijxj. Repeating this argument
for each i shows that A is closed. The proof for the closable case is similar.

Another way to enforce that a finite block operator rAijs is closed is to impose conditions of
the ranges of the underlying blocks.

Proposition 3.3.10. Let A “ rAijs be a finite block operator with each Aij a closed operator. Let Rij :“
RpAijq denote the closure of the range of Aij. If the following conditions hold for each i, then A is a closed
operator.

(i) The internal direct sum Ri1 ` ¨ ¨ ¨ ` Rim Ď Yi is a closed subspace.

(ii) Rij X Rik “ t0u whenever j ‰ k.

In particular, these conditions hold when the range-closures tRi1, . . . ,Rimu are pairwise orthogonal.

Proof. Let xpnq be a sequence in DompAq such that xpnq Ñ x P X. Suppose ypnq :“ Axpnq Ñ y P Y.
Let Pij :

À

j Rij Ñ Rij denote the orthogonal projection operator onto the Rij component, and let
Ai : X Ñ Yi denote the block operator defined by the ith row of A. Since Pij is bounded, in the
ith row we may compute:

Pijyi “ lim
nÑ8

PijAixpnq

“ lim
nÑ8

Aijx
pnq

j .
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Since Aij is closed, xj P Vij, and Pijyi “ Aijxj. Applying this argument to each row individually
shows x P DompAq and Ax “ y, proving that A is closed.

Remark 3.3.11. Under the hypotheses of Proposition 3.3.10, if each operator Aij has closed range,
then A has closed range as well.

Definition 3.3.12. Let X, Y,Z be Banach spaces, and let A : X Ñ Y and B : X Ñ Z be operators. A
is relatively bounded with respect to B (or simply B-bounded) if DompBq Ď DompAq, and there
are constants a,b ě 0 such that

}Ax}Y ď a}x}X ` b}Bx}Z

for all x P DompBq. The infimum

δ :“ inftb ě 0 : Da ě 0 witnessing the relative boundu

is called the relative bound of A with respect to B.

Definition 3.3.13. Let A “ rAijs be an nˆm finite block operator with n ě m. A is diagonally
dominant of order r if for all i ď n and j ‰ i, the operator Aij is Ajj-bounded with relative
bound δij ă r. That is, each entry of each column is relatively bounded (with relative bound ă r)
by the diagonal entry in the column.

Proposition 3.3.14. Let A “ rAijs be an pm` kq ˆm block operator with k ě 0. If A is diagonally
dominant of order 12pmk` pm´ 1q2q´1 and Aii is a closed (resp. closable) operator for each 1 ď i ď n,
then A is a closed (resp. closable) operator.

Proof. Write A “ D ` B where D and B are the pm` kq ˆm block operators consisting of the
diagonal and non-diagonal entries of A respectively. By the closed operator form of the Kato-
Rellich theorem [73, Theorem IV.1.16], to prove that A is closed, it will suffice to prove that D is
closed and that B is D-bounded with relative bound δ ă 1.

D is closed immediately by Proposition 3.3.10. To show that B is D-bounded with relative
bound δ ă 1, we use the relative bounding hypothesis and a remark in section V.4.1 in [73] to
pick a pair of constants a,b ě 0 with b ă pmk` pm´ 1q2q´1 such that for each 1 ď j ď m and
xj P DompAjjq,

}Aijxj}
2 ď a}xj}

2 ` b}Ajjxj}
2.

Next, write B in blocks

B “

»

–

B0

B1

fi

fl
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where B0 is an mˆm block operator with zero diagonal, and B1 is kˆm. For B0, compute:

}B0x}2 “

m
ÿ

i“1

›

›

›

›

›

ÿ

j‰i

Aijxj

›

›

›

›

›

2

ď

m
ÿ

i“1

ÿ

j‰i

pm´ 1q
›

›Aijxj
›

›

2

ď

m
ÿ

i“1

ÿ

j‰i

pm´ 1q
`

a}xj}
2 ` b}Ajjxj}

2
˘

“

m
ÿ

i“1

pm´ 1q2
`

a}xi}
2 ` b}Aiixi}

2
˘

“ pm´ 1q2a}x}2 ` pm´ 1q2b}Dx}2 .

Working with B1, we similarly compute:

}B1x}2 “

m`k
ÿ

i“m`1

›

›

›

›

›

m
ÿ

j“1

Aijxj

›

›

›

›

›

2

ď

m`k
ÿ

i“m`1

m
ÿ

j“1

m
›

›Aijxj
›

›

2

ď

m`k
ÿ

i“m`1

m
ÿ

j“1

m
`

a}xj}
2 ` b}Ajjxj}

2
˘

“

m
ÿ

i“1

mk
`

a}xi}
2 ` b}Aiixi}

2
˘

“ mka}x}2 `mkb}Dx}2 .

Letting C :“
`

mk` pm´ 1q2
˘

, combining these computations yields:

}Bx}2 “ }B0x}2 ` }B1x}2

ď Ca}x}2 `Cb}Dx}2.

Since bC ă 1 by hypothesis, applying the Kato-Rellich theorem proves that A “ D ` B is a closed
operator.

Remark 3.3.15. The requisite bound can be improved by observing that the relative bounds
within each column trade off against each other. That is, if the operators in column j are Ajj-
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bounded with a smaller relative bound, then the operators in column j 1 ‰ j are allowed to have
a larger relative bound. See [117, Theorem 2.2.8] for details.

Remark 3.3.16. Diagonal dominance, while essential for the previous argument, is a more restric-
tive condition than is needed. By rearranging the order of the summands in X and Y, any block
operator where every column has a dominant operator (with the required relative bounds), each
living in a distinct row, can be rearranged into a diagonally dominant operator.

Remark 3.3.17. Given an nˆ pn` kq block operator A “ rAijs with more columns than rows,
we may still apply Proposition 3.3.14 through a padding argument. Extend A to a square block
operator

Â :“

»

–

A

0

fi

fl .

This extended operator is closed (resp. closable) if and only if A is closed (resp. closable). How-
ever, Â can only be diagonally dominant when the entries in the columns of index j ą n are all
bounded operators (and hence are relatively bounded by 0).

Yet another way to force a finite block operator to be closed is to essentially combine the
hypotheses of Proposition 3.3.10 and Proposition 3.3.14.

Definition 3.3.18. Let A “ rAijs be an n ˆm finite block operator. The ith0 row of A is row
dominant of order r if for all i, j, the operator Aij is Ai0j-bounded with relative bound δij ă r.
That is, each entry of each column is relatively bounded (with relative bound ă r) by the entry
in row i0.

Proposition 3.3.19. Let A “ rAijs be an nˆm block operator. Let i0 be a row index, and let Rj :“

RpAi0jq denote the closure of the range of Ai0j. The finite block operator is closed (resp. closable) if the
following conditions hold.

(i) Row i0 is row dominant of order 1{m.

(ii) Each Ai0j is a closed (resp. closable) operator.

(iii) The closed ranges tRjuj : 1 ď j ď mu are pairwise orthogonal in Yi0 .

Proof. Without loss of generality, suppose i0 is the top row of A. Write A as A “ A0 ` B where
A0 is the top row of A with all other entries zeroed out, and B is A with the top row zeroed out.
By Proposition 3.3.10, A0 is a closed operator.

Again, pick a,b ě 0 with b ă 1{m such that for each Aij with i ą 1,

}Aijxj}
2 ď a}xj}

2 ` b}A1jxj}
2.

78



We now compute:

}Bx}2 “

n
ÿ

i“2

›

›

›

›

›

m
ÿ

j“1

Aijxj

›

›

›

›

›

2

ď

n
ÿ

i“2

m
ÿ

j“1

m}Aijxj}
2

ď

n
ÿ

i“2

m
ÿ

j“1

mpa}xj}
2 ` b}A1jxj}

2q

“ ma}x}2 `mb}A0x}2.

Sincemb ă 1 by hypothesis, the Kato-Rellich theorem again proves that A “ A0` B is closed.

To conclude this section, we summarize a few ways to enforce that a block operator be closed
or closable.

• Ensure there is at most one unbounded operator per-row.

• Ensure the images of the operators in each row are orthogonal.

• Check for a dominant operator in each column, each living in a distinct row.

• Check for a dominant row containing operators with orthogonal images.

79



4

C E L L U L A R S H E AV E S O F H I L B E RT S PA C E S

Having established the necessary categorical and operator-theoretic foundations in Chapter 3, we
now turn to the central construction of this thesis: cellular sheaves valued in Hilbert spaces. This
chapter develops a systematic theory of cellular sheaves valued in the category Hilb0,k of Hilbert
spaces and unbounded operators. The passage from finite to infinite dimensions introduces fun-
damental complications that require careful treatment. When restriction maps are unbounded
and partially defined, the composition of morphisms requires precise domain bookkeeping, the
associated cochain complexes may fail to satisfy the hypotheses of a Hilbert complex, and even
basic sheaf operations such as the sheaf hom become problematic.

We address these challenges through a two-stage approach. Section 4.1 introduces pre-Hilbert
sheaves as the most general cellular sheaves valued in Hilb0,k. Section 4.2 and Section 4.3 de-
scribe the sections and associated cochain complexes of pre-Hilbert sheaves. While pre-Hilbert
sheaves generalize weighted cellular sheaves directly, they may exhibit pathological behavior:
their coboundary operators need not be closable, their cohomology groups may fail to exist, and
their spectral theory may be ill-defined. Section 4.4 identifies the additional hypotheses necessary
to obtain well-behaved objects, leading to the definition of Hilbert sheaves proper. A pre-Hilbert
sheaf F : P Ñ Hilb0,k qualifies as a Hilbert sheaf when its associated coboundary operators δ̊k

are closable, ensuring that the cochain complex forms a genuine Hilbert complex in the sense of
Brüning and Lesch [17].

The remainder of the chapter develops the fundamental constructions and properties of Hilbert
sheaves. We introduce two distinguished classes of Hilbert sheaves that merit special attention:
bounded Hilbert sheaves, where all restriction maps are bounded operators, and closed Hilbert
sheaves, where all coboundary operators have closed range. These classes exhibit particularly fa-
vorable properties; bounded sheaves admit normalization under suitable conditions, while closed
sheaves possess honest (rather than reduced) cohomology groups. Throughout, we illustrate the
theory with concrete examples, including sheaves arising from differential operators on mani-
folds and block operator constructions.
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4.1 pre-hilbert sheaves

We now extend the scope of weighted cellular sheaves from finite dimensional Hilbert spaces to
arbitrary Hilbert spaces. The most direct generalization yields what we call pre-Hilbert sheaves—
functors on GACs valued in the the category Hilb0,k of Hilbert spaces and unbounded operators.
While these objects arise naturally and many fundamental constructions from weighted cellu-
lar sheaf theory carry over, the unboundedness introduces complications that will necessitate
additional hypotheses in subsequent sections.

Definition 4.1.1. A cellular pre-Hilbert sheaf (or simply a pre-Hilbert sheaf) is a cellular sheaf
F : P Ñ Hilb0,k (as per Definition 1.4.1) with grade-wise finite domain P, valued in the category
of Hilbert spaces and operators. In particular, it consists of the following data.

• A grade-wise finite graded acyclic category P that admits a signed incidence structure ϵ.

• For each object σ P P, a Hilbert space Fpσq called the stalk over σ.

• For each indecomposable morphism f : σ Ñ τ in P, a Hilb0,k-morphism Ff : Fpσq Ñ Fpτq

called the restriction map over f.

• All other morphisms in the image of F are determined by composition.

Remark 4.1.2. Pre-Hilbert sheaves directly generalize weighted cellular sheaves, which are valued
in the category FinHilbk of finite dimensional Hilbert spaces [54, Section 3.1]. In FinHilbk, all
operators are bounded and globally defined.

Remark 4.1.3. The "pre" prefix is not meant to invoke pre-Hilbert spaces; each stalk of a pre-
Hilbert sheaf is an honest Hilbert space. We will soon see that extra hypotheses are needed to
ensure that a pre-Hilbert sheaf behaves in a manner similar to a weighted cellular sheaf. It is only
under those additional hypotheses that we will call a cellular sheaf a "Hilbert sheaf". In short,
"pre-Hilbert sheaf" should be parsed as "pre-(Hilbert sheaf)", not as "(pre-Hilbert) sheaf."

Several essential concepts and constructions on weighted cellular sheaves can be straightfor-
wardly adapted to pre-Hilbert sheaves.

4.2 sections

Definition 4.2.1. Let F : P Ñ Hilb0,k be a pre-Hilbert sheaf, and let Z Ď P be a subcategory of P.
The space of sections over Z is the restriction limit

ΓpZ;Fq :“ reslimF
∣∣
Z
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where F
∣∣
Z

is the restriction of F to the sub-category Z. When Z “ P, we recover the space of
global sections ΓpFq :“ ΓpP;Fq.

Since Hilb0,k admits all finite restriction limits, spaces of sections are always well-defined.
Moreover, since finite dimensional subspaces of Hilbert spaces are always closed, when F is
valued in the subcategory FinHilbk Ď Hilb0,k, these restriction-limit sections exactly recover the
usual spaces of sections of a weighted cellular sheaf.

Like weighted cellular sheaves, the spaces of sections of a pre-Hilbert sheaf admit a nice char-
acterization through the construction in Remark 3.1.23. Given a sub-category Z Ď P, an F

∣∣
Z

-
admissible point x is a choice xσ P Fpσq for each object σ P Z such that whenever f : σ Ñ τ is
a Z-morphism, then Ffpxσq “ xτ. An F

∣∣
Z

-admissible point can thus be interpreted as a locally
consistent choice of data in each stalk. The space of sections ΓpZ;Fq is the closure of space of
F
∣∣
Z

-admissible points.

Remark 4.2.2. When F : P Ñ Hilbk Ď Hilb0,k has all bounded and globally-defined restriction
maps, all restriction limits agree with the usual limits in Hilbk.

The space of global sections of a pre-Hilbert sheaf F : P Ñ Hilb0,k is the restriction limit
reslimF. That is, ΓpFq is the closure of the space of F-admissible points; choices xσ P Fpσq for
each object σ P P such that whenever f : σ Ñ τ is a P-morphism, then Ffpxσq “ xτ. There
may be global sections which merely are limits of sequences of F-admissible points, but are not
themselves F-admissible.

As an object in Hilb0,k, the space of global sections ΓpFq comes equipped with a Hilbert space
inner product. However, this inner product is non-canonical; the structure is merely defined up
to isomorphisms, or equivalently, up to the size of a Hilbert space basis. In particular, the space
of global sections is not defined uniquely up to unitary isomorphism.

As constructed via restriction limit, ΓpFq inherits its inner product structure as a subspace

ΓpFq Ď
à

σPP

Fpσq.

While this is a legitimate construction of ΓpFq as a Hilbert space, there is a preferable construction.
We present this construction for global sections, but a similar construction holds for all spaces
of sections. Every F-admissible point x P

À

σPP Fpσq is uniquely determined by a choice of a
point xσ P Fpσq for each object σ P P of rank rpσq “ 0; all other values xτ can be determined by
applying restriction maps. We may pare off this superfluous information, and instead identify
x as a point in C0pP,Fq “

À

rpσq“0 Fpσq. The closure of this set of F-admissible points (with
different cone-legs) also satisfies the universal property of the restriction limit reslimF, and can
be identified as the space of global sections. The difference between these two constructions of
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ΓpFq is entirely analogous to the construction of a pullback as a cone over a cospan vs. as a
commutative square.

Going forward, we will always identify ΓpFq with the second construction, and the Hilbert
space structure it receives as a subspace of C0pP;Fq. This identification is advantageous for at
least two reasons. First, as we will see, this aligns better with the Hodge theory of Hilbert com-
plexes. Second, when necessary, it will allow us to safely consider pre-Hilbert sheaves whose
underlying categories P have infinitely many objects. Provided P is locally finite and has at most
finitely many objects of each rank, C0pP;Fq will be a Hilbert space and all arguments will go
through without extra work.

Remark 4.2.3. It has been observed [52, 54] that it would be preferable to use the technology of
dagger limits [62]—which define limits in dagger categories up to unitary isomorphism—to define
spaces of sections. This is, unfortunately, not possible in the dagger category Hilbk. As shown by
Heunen and Karvonen, Hilbk does not admit all dagger limits; it does not even admit all dagger
pullbacks [62]. Moreover, By the construction of dagger limits, when a pre-Hilbert sheaf F valued
in Hilbk does admit the construction of ΓpFq as a dagger limit (such as when all restriction maps
are dagger-monomorphism), this dagger limit does not agree with either proposed construction
of ΓpFq. However, the inclusion of ΓpFq ãÑ C0pP;Fq is a dagger kernel in the sense of Heunen and
Jacobs [61].

4.3 the associated cochain complex

Given a pre-Hilbert sheaf F : P Ñ Hilb0,k, we may form an associated cochain complex of Hilbert
spaces

`

C‚pP,Fq , δ̊‚
˘

:“ C0pP;Fq
δ̊0−Ñ C1pP;Fq

δ̊1−Ñ C2pP;Fq
δ̊3−Ñ ¨ ¨ ¨

with k-cochains CkpP;Fq and k-coboundary maps δ̊k : CkpP;Fq Ñ Ck`1pP;Fq defined by:

CkpP;Fq :“
à

rpσq“k

Fpσq ,

pδ̊kxqτ :“
ÿ

σ◁1τ
f:σÑτ

ϵpfqFfpxσq .

The operator δ̊k is the block operator rδ̊kτ,σs where σ and τ range over objects of P of rank k and
k` 1 respectively. The block δ̊kτ,σ is given by

δ̊kτ,σ :“
ÿ

f:σÑτ

ϵpfqFf ,
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and has domain Dompδ̊kτ,σq “
Ş

f:σÑτDompFfq, where the empty sum is understood to be
the globally defined zero-operator. The domain of the block operator δ̊k is therefore given by
À

rpσq“k

`
Ş

τDompδ̊kτ,σq
˘

Ď
À

rpσq“k Fpσq.
This is a "cochain complex" in the sense that δ̊k`1δ̊k is the zero-operator on its domain tx P

Dompδ̊kq : δ̊kpxq P Dompδ̊k`1qu. This can be checked by repeating the argument in the proof
Proposition 1.4.8. Many important properties from weighted cellular sheaves are preserved.

Proposition 4.3.1. The kernel kerpδ̊0q is exactly the set of F-admissible points. Moreover, the closure of
the kernel is the set of global sections ΓpFq.

In general, the cochain complex
`

C‚pP,Fq , δ̊‚
˘

will not be a Hilbert complex. There is no
guarantee that any of the following conditions hold.

1. δ̊k is densely-defined for all k.

2. δ̊k is closed for all k.

3. Rpδ̊kq Ď Dompδ̊k´1q.

Unless we have these properties, the cochain complex associated to a pre-Hilbert sheaf will not
be a Hilbert complex. Consequently, we will not have access to the (weak) Hodge decomposition
and (reduced) cohomology. Moreover, since δ̊k need not be a closed densely-defined operator, the
adjoint pδ̊kq˚ may not be densely-defined (or even exist!) in general, preventing the existence of
a Hodge Laplacian. We must restrict to a better behaved collection of cellular sheaves of Hilbert
spaces to ensure these qualities. This leads to the following definition.

Definition 4.3.2. A Hilbert sheaf is a pre-Hilbert sheaf F : P Ñ Hilb0,k whose associated cochain
complex

`

C‚pP,Fq , δ̊‚
˘

has the following properties.

(i) δ̊k is densely-defined and closable for all k.

(ii) Rpδ̊kq Ď Dompδ̊k`1q for all k.

This definition is synthetic in the sense that a Hilbert sheaf is defined to be a pre-Hilbert sheaf
with exactly the properties we desire; the required properties are not of the underlying functor
F : P Ñ Hilb0,k, but of the associated cochain complex. However, the definition gives no concrete
method for determining if a pre-Hilbert sheaf is a Hilbert sheaf. This is partly out of necessity; it
is very difficult to give clear and concise collections of necessary or sufficient conditions for a pre-
Hilbert sheaf to be a Hilbert sheaf. Moreover, most pre-Hilbert sheaves (with "most" understood
in an informal sense) are not Hilbert sheaves. As witnessed in Section 3.3, it is very difficult to
ensure that a block operator is closable.
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4.4 hilbert sheaves

A Hilbert sheaf F : P Ñ Hilb0,k has two distinct associated cochain complexes; first there is
the usual associated cochain complex as constructed in the previous subsection. As with a pre-
Hilbert sheaf, this may-or-may-not be a Hilbert complex. Second, there is an associated Hilbert
complex

`

C‚pP,Fq , δ‚
˘

, where δk :“ δ̊k is the closure of the coboundary operator δ̊k. When the
associated cochain complex is itself a Hilbert complex, we say the Hilbert sheaf is proper.

The Hilbert complex
`

C‚pP,Fq , δ‚
˘

associated to a Hilbert sheaf F : P Ñ Hilb0,k is the better
analog of the usual cochain complex of a weighted cellular sheaf. In particular, since kerpδ0q “

kerpδ̊0q, the kernel of the coboundary operator δ0 is exactly the space of global sections.
There are two special classes of Hilbert sheaves worth extra attention. First, a Hilbert sheaf

F : P Ñ Hilbk Ď Hilb0,k where every restriction map is globally defined and bounded will
generally be better behaved than its unbounded cousins. We call such a Hilbert sheaf bounded.
On the other hand, when each coboundary operator δk has closed range (hence yielding honest
cohomology instead of merely reduced cohomology), we say that a Hilbert sheaf is closed.

4.4.1 The category of Hilbert sheaves

We may form a category HilbShvkpPq of Hilbert sheaves on a GAC P as a subcategory of the
functor category rP, Hilb0,ks.

Definition 4.4.1. The category HilbShvkpPq consists of the following data.

• Objects. Each object of HilbShvkpPq is a Hilbert sheaf F : P Ñ Hilb0,k.

• Morphisms. A Morphism of Hilbert sheaves is a natural transformation ϕ : F ñ G be-
tween Hilbert sheaves such that each component ϕσ for σ P P is a bounded globally-
defined linear operator satisfying ϕσpDompFfqq Ď DompGfq for each covering morphism f

with domain σ in P.

• Composition. Composition is the usual composition of natural transformations.

Note that the underlying operators in a morphism of Hilbert sheaves must be globally defined
and bounded. This condition ensures that Hilbert sheaf morphisms induce a morphism of Hilbert
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complexes. Suppose ϕ : F Ñ G is a morphism in HilbShvkpPq. There is an induced map of
Hilbert complexes

¨ ¨ ¨ CkpP;Fq Ck`1pP;Fq ¨ ¨ ¨

¨ ¨ ¨ CkpP;Gq Ck`1pP;Gq ¨ ¨ ¨

δkpP;Fq

ϕk ϕk`1

δkpP;Gq

where the map ϕk is the direct sum

ϕk “
à

rpσq“k

ϕσ.

Since ϕτFf “ Gfϕσ for each covering morphism f : σ Ñ τ in P, the chain map ϕ‚ is a morphism
of Hilbert complexes.

Notation 4.4.2. We let BHilbShvkpPq denote the full sub-category of Hilbert sheaves where all
restriction maps are bounded and globally defined. We call such Hilbert sheaves bounded Hilbert
sheaf.

4.4.2 Finding Hilbert sheaves

We now turn to the problem of when a Pre-Hilbert sheaf is a Hilbert sheaf. We start with a few
useful examples.

Proposition 4.4.3. Every pre-Hilbert sheaf F : P Ñ Hilbk Ď Hilb0,k with bounded restriction maps is
a proper Hilbert sheaf.

Proof. When each restriction map Ff is bounded and globally defined, each coboundary map
δk is also bounded and globally defined. The associated cochain complex is therefore a Hilbert
complex.

Remark 4.4.4. It follows from this proposition that BHilbShvkpPq is exactly the functor category
rP, Hilbks.

Example 4.4.5. Consider a pre-Hilbert sheaf F : G Ñ Hilb0,k where G “ pV,Eq is a finite undi-
rected multi-graph without self loops, viewed as a posetal category. Suppose there is a closed
densely-defined operator A : X Ñ Y such that Ff “ A for every restriction map. Each edge e has
exactly two bounding vertices u, v, and the coboundary map δ̊ : C0pG;Fq Ñ C1pG;Fq maps into
Fpeq by

pδ̊xqe “ A‘ p´Aq
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up to a choice of orientation.
In general, this coboundary operation is not closed (see Example 3.3.4). However, it is closable,

as witnessed by a straightforward computation. Hence this is an improper Hilbert sheaf.
As a concrete example, consider the one-edge graph, and the following Hilbert sheaf

L2pRq L2pRq L2pRq

‚ ‚

d
dx

d
dx

where the domain of the derivative operator is tf P L2pRq : f 1 P L2pRqu. This derivative operator
is easily seen to be closed. The associated cochain complex is given by

L2pRq ‘ L2pRq L2pRq

„

d
dx ´ d

dx

ȷ

,

with coboundary map δ̊ “

”

d
dx p´ d

dxq

ı

. This is not a closed operator. The closure, δ, has domain

Dompδq “ tpf,gqT P L2pRq ‘ L2pRq : d
dxpf ´ gq P L2u, and acts by weak differentiation of the

difference, δpf,gqT “ d
dxpf´ gq, yielding the associated Hilbert complex

L2pRq ‘ L2pRq L2pRq
δ .

Remark 4.4.6. As this example shows, the closure of the block operator δ̊k need not be a block
operator itself with respect to the same decomposition.

Remark 4.4.7. More generally, any Hilbert sheaf where every restriction map at a given rank is
the same closable operator will be a (usually improper) Hilbert sheaf.

It is, in general, difficult to write theorems for checking if a pre-Hilbert sheaf F : P Ñ Hilb0,k

is a Hilbert sheaf. To ensure that the coboundary operator δ̊k is densely-defined and closable
is often a matter of checking properties of the block operator directly through ad hoc methods.
However, there are a few handy tricks for building a Hilbert sheaf from the ground up.

Suppose we have a GAC P on which we would like to define a Hilbert sheaf. We start by
building a functor F0 : P Ñ DenseCoreHilb0,k valued in cored Hilbert spaces. Further, assume
that stalks F0pσq “ pXσ,Vσq have already been assigned. For each covering map f : σ Ñ τ, take
F0pfq : pXσ,Vσq Ñ pXτ,Vτq to be an operator such that RpF0pfqq Ď Vτ. After pushing through
the forgetful functor U : DenseCoreHilb0,k Ñ Hilb0,k, we arrive at a pre-Hilbert sheaf F “ UF0

whose coboundary operators δ̊k are densely defined and satisfy Rpδ̊kq Ď Dompδ̊k`1q. To further
ensure that each δ̊k is closable, the results in Section 3.3 are helpful.
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We end this section with a large class of Hilbert sheaves on a network G. We start by briefly
recalling a few definitions from differential geometry. We assume that all manifolds are real and
second countable, and that all vector bundles have finite rank.

Notation 4.4.8. Let M be a smooth manifold, and π : E Ñ M a smooth vector bundle over M.
We denote the fiber over p P M by Ep :“ π´1ppq. We further denote the space of sections of E by
ΓpEq, and the space of smooth sections by Γ8pEq.

Notation 4.4.9. We use the following standard notation for multi-indices. Given an n-tuple of
non-negative integers α “ pα1, . . . ,αnq, let |α| “

ř

j αj. For an x P Rn, let xα :“
śn
j“1 x

αj
j . Finally,

let B|α|

Bxα “ B|α|

Bx
α1
1 ¨¨¨Bxαnn

.

Definition 4.4.10. Let M be a real smooth manifold, and E Ñ M as smooth vector bundle over M.
A metric on E is an assignment of an inner product hp : Ep ˆ Ep Ñ R to each fiber Ep of E. We
further require that for any pair of smooth sections s1, s2 P Γ8pEq, that the map ϕppq : M Ñ R

defined by ϕppq :“ hpps1ppq, s2ppqq is smooth.

Definition 4.4.11. Let M be a smooth manifold, E Ñ M a smooth vector bundle equipped with
a metric h, and µ a volume form on M. A section s P ΓpEq is an L2-section if

ż

M

hppsppq, sppqqdµppq ă 8.

We denote the space of L2-sections by L2pEq.

Remark 4.4.12. The space L2pEq is a real Hilbert space with respect to pointwise addition, point-
wise scaling, and the inner product

xs1, s2yL2 “

ż

M

hpps1ppq, s2ppqqdµppq.

Moreover, the space Γ8
c pEq of compactly supported smooth sections is dense in L2pEq. This stan-

dard result may be proven using a mollifier argument and a partition of unity. See [79] for details.

Definition 4.4.13. Let M be a smooth manifold, and E, F a pair of smooth vector bundles over M,
with a shared collection of trivializing neighborhoods tUjujPJ. Let Γ8pEq and Γ8pFq denote the
spaces of smooth sections of E and F. A linear map D : Γ8pEq Ñ Γ8pFq is a differential operator
if there is an integer m ě such that in each neighborhood Uj with local coordinates x we may
write

D
∣∣
Uj

pxq “
ÿ

|α|ďm

A
piq
α pxq

B|α|

Bxα

where Apiq is a qˆ p matrix of smooth functions.
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Remark 4.4.14. Let M be a smooth manifold with a volume form µ, and E, F a pair of smooth
vector bundles over M, both equipped with metrics. A differential operator D : Γ8pEq Ñ Γ8pFq

defines an unbounded operator D : L2pEq Ñ L2pFq with domain DompDq :“ Γ8
c pEq.

Lemma 4.4.15. Let D : L2pEq Ñ L2pFq be a differential operator with domain Γ8
c pEq. D is closable.

Proof. This is a standard fact about differential operators. The essence of the argument is that any
such D : Γ8pEq Ñ Γ8pFq, due to its smooth coefficients, admits a formal adjoint D: : Γ8pFq Ñ

Γ8pEq, such that the integration by parts formula

ż

M

hppD:tppq, sppqqdµ “

ż

M

hpptppq,Dsppqqdµ

holds for every pair of sections s P Γ8pEq and t P Γ8pFq such that supppsq X suppptq is compact.
For a full proof, see [108, Lemma 12.8]. From this formal adjoint, we see that D : L2pEq Ñ L2pFq

admits a densely defined adjoint D˚ as an unbounded Hilbert space operator, from which we
may conclude that D is closable.

Lemma 4.4.16. Let D “ rDijs :
Àm
j“1 Γ

8pEpjqq Ñ
Àn
i“1 Γ

8pFpiqq be a finite block operator with each
component Dij a differential operator. D is a differential operator.

Proof. Let s “ ps1, . . . , smqT P
Àm
j“1 Γ

8pEpjqq be a tuple of smooth sections. s is a smooth section
of the direct sum bundle Ep1q ‘ ¨ ¨ ¨ ‘Epmq Ñ M. In local coordinates, each termDij can be written
as a smooth-function weighted sum of derivatives. Consequently, Ds P

Àn
i“1 Γ

8pFpiq itself is a
smooth-function weighted sum of derivatives, and hence a differential operator.

With these lemmas in hand, we can define a broad class of Hilbert sheaves.

Theorem 4.4.17. Let G “ pV,Eq be a finite network, and F : G Ñ Hilb0,R be a pre-Hilbert sheaf
consisting of the following data.

• For each σ P V > E, the stalk Fpσq :“ L2pEσq, where Eσ is a smooth vector bundle, equipped with a
metric, over a smooth manifold Mσ with volume form µσ.

• For each covering morphism f : v Ñ e, the restriction map Ff : L
2pEvq Ñ L2pEeq is a differential

operator.

F is a Hilbert sheaf.

Proof. The coboundary operator δ̊ : C0pG;Fq Ñ C1pG;Fq is a finite block operator with differential
operators for blocks. Lemma 4.4.16 ensures that δ is itself a differential operator, which is closable
by Lemma 4.4.15. Therefore F is a Hilbert sheaf.
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Remark 4.4.18. The closure δ corresponds to extending the domain of δ̊ to sufficiently weakly-
differentiable sections with square integrable derivatives, which corresponds to the Sobolev space
Hkp

À

vPV E
vq Ď L2p

À

vPV E
vq “ C0pG;Fq, where k is the order of δ as a differential operator.

4.5 sheaf operations

We now return to the sheaf operations briefly discussed in Section 1.4.4. While most sheaf opera-
tions, when applied to a pre-Hilbert sheaf, will yield a new pre-Hilbert sheaf, care must be taken
with Hilbert sheaves. Not all sheaf operations respect the closability of the coboundary operator
without additional assumptions. To that end, we state operations in terms of pre-Hilbert sheaves,
and provide conditions under which following each operation with a proposition that states
when the operation yields a Hilbert sheaf. These criteria should not be considered exhaustive.

Remark 4.5.1. Since bounded pre-Hilbert sheaves are always Hilbert sheaves, and all sheaf op-
erations preserve boundedness of restriction maps, it follows that all sheaf operations respect
bounded Hilbert sheaves.

4.5.1 Direct sum

Definition 4.5.2. Let F,G : P Ñ Hilb0,k be pre-Hilbert sheaves. The direct sum of F and G is the
pre-Hilbert sheaf F ‘ G : P Ñ Hilb0,k with stalks pF ‘ Gqpσq “ Fpσq ‘ Gpσq and restriction maps
given by pF ‘ Gqf “ Fpfq ‘ Gpfq.

Proposition 4.5.3. If F,G : P Ñ Hilb0,k are both Hilbert sheaves, the direct sum F ‘G is a Hilbert sheaf
as well.

Proof. The space of k-cochains of F‘G decomposes as CkpP;F‘Gq “ CkpP;Fq ‘CkpP;Gq. Hence
the coboundary operator δ̊kF‘G itself can be written as a block operator

δ̊kF‘G “

»

–

δ̊kF 0

0 δ̊kG

fi

fl

with respect to this decomposition, with domain Dompδ̊kFq ‘ Dompδ̊kGq. It easily follows that F‘G

is a Hilbert sheaf.
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4.5.2 Tensor product

Definition 4.5.4. The tensor product of two pre-Hilbert sheaves F,G : P Ñ Hilb0,k is the pre-
Hilbert sheaf F b G : P Ñ Hilb0,k with stalks pF b Gqpσq “ Fpσq b Gpσq and restriction maps
given by pF b Gqf “ Fpfq b Gpfq.

Proposition 4.5.5. Let F,G : P Ñ Hilb0,k be Hilbert sheaves whose coboundary operators δ̊kF and δ̊kG
have closable rows. The tensor product F b G is also a Hilbert sheaf.

Proof. Let τ P P be a pk` 1q-cell, and let Rτ denote the row of the k-coboundary operator δ̊k of
F b G that maps onto pF b Gqpτq To prove that Rτ is closable, it suffices to show that the adjoint
map R˚

τ has dense domain. There are inclusions

č

σ◁1τ

č

f:σÑτ

Dom ppFf b Gfq
˚q Ď DompR˚

τq Ď pF b Gqpτq.

Since F and G each row of the coboundary operators δ̊kF and δ̊kG are closable, there are dense
linear subspaces:

XF :“
č

σ◁1τ

č

f:σÑτ

DompF˚
f q Ď Fpτq ,

XG :“
č

σ◁1τ

č

f:σÑτ

DompG˚
fq Ď Gpτq .

There is a sequence of dense subspaces

XF balg XG Ď Fpτq balg Gpτq Ď Fpτq b Gpτq “ pF b Gqpτq

where balg denotes the algebraic tensor product. Since DompA˚ bB˚q Ď Dom
`

pAbBq˚
˘

for any
pair of Hilbert space operators, XF balg XG Ď DompR˚

τq. Therefore R˚
τ is densely defined, making

Rτ closable. By Lemma 3.3.6, δ̊k is closable, and F b G is a Hilbert sheaf.

4.5.3 Sheaf hom

Unlike for weighted cellular sheaves, the sheaf hom cannot always be defined for pre-Hilbert
sheaves. The essential problem is that for infinite dimensional Hilbert spaces X and Y, the space of
bounded linear operators HilbkpX, Yq is a Banach space, but not a Hilbert space. This obstruction
to the sheaf hom construction also applies to bounded Hilbert sheaves. However, by restricting
to Hilbert sheaf morphisms to those whose components are Hilbert Schmidt operators.
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Notation 4.5.6. Let F,G : P Ñ Hilb0,k be pre-Hilbert sheaves. For σ P P, let HSσpF,Gq denote the
collection of natural transformations ϕ : F

∣∣
stpσq

ñ G
∣∣
stpσq

that satisfy the following conditions.

(i) Each component ϕτ : Fpτq Ñ Gpτq is a bounded, globally defined Hilbert Schmidt operator.

(ii) For every morphism f of stpσq with source τ, there is an inclusion ϕτpDompFfqq Ď DompGfq.

Lemma 4.5.7. Let F,G : P Ñ Hilb0,k be pre-Hilbert sheaves. If the restriction maps of G are closed, the
space HSσpF,Gq is a Hilbert space for each σ P P.

Proof. We may identify HSσpF,Gq as a linear subspace of the Hilbert space1

H :“
à

τPstpσq

HSpFpσq,Gpσqq ,

where HSpFpσq,Gpσqq is the Hilbert space of Hilbert Schmidt operators between Fpσq and Gpσq.
We now must verify that HSσpF,Gq is closed as a subspace of H.

Let ϕn denote a sequence of natural transformations in HSσpF,Gq such that ϕn Ñ ϕ P H. Each
component ϕnτ converges to ϕτ in the Hilbert-Schmidt norm, and hence in the operator norm as
well.

Let f : τ Ñ γ be a morphism of P. Let x P DompFfq. For each n P N, we have that Gfϕnτ x “

ϕnγFfx. By the observed operator norm convergence, we have strong convergence, so ϕnτ x Ñ

ϕτx and ϕnγFfx Ñ ϕγFfx. Since Gf is closed, Gfϕnτ x Ñ Gfϕτx “ ϕγFfx, proving that ϕ P

HSσpF,Gq.

Remark 4.5.8. Since every natural transformation in HSσpF,Gq contains the data of a natural
transformation HSτpF,Gq for every τ ě σ, we may identify HSτpF,Gq Ď HSσpF,Gq as a sub-
Hilbert space.

With this lemma, we may define a Hilbert-Schmidt analog to the sheaf hom.

Definition 4.5.9. Let F,G : P Ñ Hilb0,k be pre-Hilbert sheaves, with G having closed restriction
maps. The Hilbert Schmidt sheaf hom from F to G is the pre-Hilbert sheaf HSpF,Gq with stalks
HSpF,Gqpσq “ HSσpF,Gq, and all restriction maps given by orthogonal projection.

Since every restriction map in HSpF,Gq is an orthogonal projection, and hence bounded, we
immediately get the following result by Proposition 4.4.3.

Proposition 4.5.10. Let F,G : P Ñ Hilb0,k be pre-Hilbert sheaves, with G having closed restriction
maps. The Hilbert Schmidt sheaf hom HSpF,Gq is a Hilbert sheaf.

1 Note that when stpσq contains infinitely many object, the maps in H must have square-summable Hilbert Schmidt
norms.
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Remark 4.5.11. Unsurprisingly, there is no longer a tensor % hom adjunction for Hilbert sheaves.
This is an immediate consequence of the lack of a tensor % hom adjunction for Hilbert spaces in
general.

4.5.4 Kernel

Definition 4.5.12. Let η : F Ñ G be a morphism of Hilbert sheaves. The kernel of η is the Pre-
Hilbert sheaf kerpηq : P Ñ Hilb0,k with stalks kerpηqpσq “ kerpησq Ď Fpσq, and restriction maps
kerpηqf “ Ff

∣∣
kerpησq

for f : σ Ñ τ.

Proposition 4.5.13. The kernel of a Hilbert sheaf morphism is a Hilbert sheaf.

Proof. Let δ̊k denote the k-coboundary operator of F. The k-coboundary operator of kerpηq is
the restriction of δ̊k to a sub-Hilbert space CkpP; kerpηqq Ď CkpP;Fq. Since δ̊k is closable, this
restriction is closable as well.

4.5.5 Pullback

Definition 4.5.14. Let ϕ : P Ñ Q be a cellular map. The pullback of a pre-Hilbert sheaf F :

Q Ñ Hilb0,k by ϕ is the pre-Hilbert sheaf ϕ˚F : P Ñ Hilb0,k with stalks ϕ˚Fpσq “ Fpϕpσqq and
restriction maps ϕ˚Ff “ Fϕpfq.

Proposition 4.5.15. Let P,Q be finite GACs which admit signed incidence structures, ϕ : P Ñ Q a
covering map, and F : Q Ñ Hilb0,k a Hilbert sheaf. The pullback ϕ˚F is a Hilbert sheaf.

Proof. It is straightforward to verify that there is an n P N such that for each object σ P Q,
|ϕ´1pσq| “ n. Therefore we may write

CkpP;ϕ˚Fq “
àn

CkpP;Fq ,

where
Àn denotes the n-fold direct sum. With respect to this direct sum decomposition, we may

write δ̊kϕ˚F “
Àn δ̊kϕ˚F since ϕ is an isomorphism star-wise. It follows that δ̊kϕ˚F is closable.

Remark 4.5.16. In general, the pullback of a Hilbert sheaf need not be a Hilbert sheaf. The
essential problem is that an arbitrary pullback may duplicate blocks in the coboundary matrix
in a manner that breaks closability. Without additional structure to the cellular map ϕ to control
the preimages of cells, closability cannot be guaranteed.
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4.5.6 Pushforward

Defining the pushforward of a pre-Hilbert sheaf requires the use of restriction limits. Let ϕ : P Ñ

Q be a cellular map. For each object σ P Q, let Pϕ,σ denote the full subcategory of P generated by
the set of objects tσ 1 P P : ϕpσ 1q ě σu in the underlying poset of Q. By domain restriction, each
such category Pϕ,σ defines a functor F

∣∣
Pϕ,σ

: Pϕ,σ Ñ Hilb0,k. This functor has a restriction limit

ϕ˚Fpσq :“ reslimF
∣∣
Pϕ,σ

.

When σ ď τ in the poset underling Q, the restriction-limiting cone over F
∣∣
Pϕ,σ

with apex ϕ˚Fpσq

defines a cone over F
∣∣
Pϕ,τ

. Since both of these cones have total legs, there is a unique operator

ϕ˚Ff : ϕ˚Fpσq Ñ ϕ˚Fpτq

such that qγ “ pγϕ˚Ff, where pγ and qγ are the legs of the cones with apex ϕ˚Fpτq and ϕ˚Fpσq

respectively.

Definition 4.5.17. Let ϕ : P Ñ Q be a cellular map. The pushforward of a pre-Hilbert sheaf
F : P Ñ Hilb0,k by ϕ is the pre-Hilbert sheaf ϕ˚F : Q Ñ Hilb0,k with stalks ϕ˚Fpσq and
restriction maps ϕ˚Ff.

Remark 4.5.18. It is, in general, very difficult to ensure that the pushforward of a Hilbert sheaf
F is a Hilbert sheaf outside of the bounded case. The fundamental challenge is that when the re-
striction limits used to define the stalks of ϕ˚F are not honest limits, there is no clear relationship
between the coboundary operators δ̊kF and δ̊kϕ˚F

.

Proposition 4.5.19. Let F : P Ñ Hilbk be a bounded Hilbert sheaf, and ϕ : P Ñ Q a cellular map. The
pushforward ϕ˚F is a Hilbert sheaf.

4.6 cohomology

Let F : P Ñ Hilb0,k be a Hilbert sheaf with associated Hilbert complex
`

C‚pP,Fq , δ‚
˘

. As a
Hilbert complex, we get a corresponding reduced sheaf cohomology

HkpP;Fq :“ kerpδkq{Rpδk´1q.

When Rpδk´1q is closed, we call Hk the kth-sheaf cohomology.
In degree zero, the (reduced) sheaf cohomology is easy to interpret. By Theorem 3.2.11, there

is a unitary isomorphism ΓpFq “ kerpδ0q – HkpP;Fq between the reduced sheaf cohomology
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and the space of global sections. Higher cohomology groups for closed Hilbert sheaves can be
interpreted as obstructions to lifting cocyclic sections in the manner of Section 3.2.3.

We may also work with relative cohomology of Hilbert sheaves. Say that a full subcategory
B Ď P is a subcomplex2 of P if whenever y P B and x ď y in the underlying poset, we have
x P B as well. When B is a subcomplex of P, every signed incidence structure ϵ on P restricts to
a signed incidence structure on P. The restriction F

∣∣
B
: B Ñ Hilb0,k is itself a Hilbert sheaf.

We may view the restriction F
∣∣
B
: B Ñ Hilb0,k as a Hilbert sheaf on P in the following way.

Let ι : B Ñ P denote the inclusion of B as a subcategory. Both ι˚ and ι˚ preserve Hilbert sheaves,
so we may apply both to F and obtain a Hilbert sheaf ι˚ι˚F : P Ñ Hilb0,k. This Hilbert sheaf
essentially looks look F, except the stalk Fpσq “ 0 (with the restriction maps into and out of Fpσq

adjusted accordingly) whenever σ R B. There is a natural transformation F Ñ ι˚ι
˚F given by the

identity map I on stalks over σ P B, and 0 on the stalks over σ R B.
We may also form the Hilbert sheaf kerpι˚ι

˚q : P Ñ Hilb0,k, which has stalks

kerpι˚ι
˚qpσq “

$

’

&

’

%

Fpσq if σ R B

0 if σ P B

and restriction maps given by domain restriction. There is a morphism of Hilbert sheaves from
kerpι˚ι

˚q to F whose components are stalk-wise inclusion maps.
Note that ι˚ι˚F and kerpι˚ι

˚q are non-zero on complementary stalks. Consequently, the Hilbert
complex (reduced) cohomology of the Hilbert complex associated to kerpι˚ι

˚q may be identified
with the relative cohomology of F with respect to ι˚ι˚F. We thus use the notation H‚

`

P,B;F
˘

:“

H‚
`

P; kerpι˚ι
˚q
˘

.
The identified natural transformations yields a short exact sequence of Hilbert sheaves

0 Ñ kerpι˚ι
˚q Ñ F Ñ ι˚ι

˚F Ñ 0 ,

2 We adopt the term "subcomplex" to evoke a subcomplex of a regular cell complex, which play an analogous role when
a cellular sheaf is defined on a face poset.
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which functorially induces an exact sequence of the associated Hilbert complexes:

...
...

...

0 Ck
`

P; kerpι˚ι
˚q
˘

Ck
`

P;F
˘

Ck
`

P; ι˚ι˚F
˘

0

...
...

...

δkkerpι˚ι
˚q δkF

δk
ι˚ι

˚F

.

The snake lemma (Lemma 3.2.12) provides the following Hilbert complex.

H0
`

P, ;F
˘

H0
`

P;F
˘

H0
`

P; ι˚ι˚F
˘

H1
`

P, ;F
˘

H1
`

P;F
˘

H1
`

P; ι˚ι˚F
˘

¨ ¨ ¨

d0

d1

When F is a closed Hilbert sheaf, the restriction ι˚ι˚F is closed as well. It follows that this
sequence is exact at all locations except Hk

`

P; ι˚ι˚F
˘

.

Remark 4.6.1. Note that when F is a closed Hilbert sheaf, it does not necessarily follow that
kerpι˚ι

˚Fq is closed.

4.7 range and normalization

Beyond having an interpretable cohomology, closed Hilbert sheaves, whose coboundary opera-
tors δk have closed range, have desirable properties that generic Hilbert sheaves lack. The follow-
ing proposition justifies the emphasis on closed Hilbert sheaves.

Proposition 4.7.1. Let A : X Ñ Y be a closed, densely defined Hilbert space operator. If A has closed
range, then 0 R σpAq or 0 is an isolated eigenvalue.

Proof. This follows straightforwardly from the closed range theorem (Theorem 2.3.15). Since A
has closed range, the restriction A0 :“ A

∣∣
kerpAqK is bounded below; there is a constant C ą 0

such that }A0x} ě C}x} for all x P DompA0q. A0 is injective, and admits an inverse map A´1
0 :

Y Ñ kerpAqK with domain DompA´1
0 q “ RpA0q. A´1

0 is a bounded operator with operator norm
}A´1
0 }op ď 1

C . The spectral radius of a bounded operator is bounded above by the operator norm,
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so |λ| ď 1
C for all λ P σpA´1

0 q. By the spectral inversion formula, σpAqzt0u “ σpA0qzt0u “ tλ P

C : 1λ P σpA´1
0 qzt0uu is bounded away from zero.

When F : P Ñ Hilb0,k is a closed Hilbert sheaf, each coboundary operator δk : CkpP;Fq Ñ

Ck`1pP;Fq has a "gap" in its spectrum surrounding 0. As we will observe in the following chap-
ters, the closed range condition also impacts the Hodge Laplacian of the corresponding Hilbert
complex, causing the spectral theory and dynamics to more closely mirror that of the finite
dimensional case. Other closed range conditions also allow the recovery of finite dimensional
results, like sheaf normalization.

Definition 4.7.2. Let F : P Ñ Hilb0,k be a Hilbert sheaf. F is normalized if for all σ P P and
x,y P Fpσq X kerpδqK, we have xδx, δyy “ xx,yy.

Remark 4.7.3. Note that we are defining normalization with respect to the Hilbert complex associ-
ated to the cellular sheaf.

Remark 4.7.4. It follows directly from the definition that if F : P Ñ Hilb0,k is a normalized sheaf,
the coboundary operator δ‚ is a bounded operator in each grade. Under some additional mild
hypotheses on the structure of P, it follows that F is a bounded Hilbert sheaf.

At times, it is convenient to normalize a cellular sheaf—replace a cellular sheaf F with an
isomorphic normalized sheaf F̂.

Theorem 4.7.5. Let F : P Ñ Hilb0,k be a Hilbert sheaf such that P has a maximal rank N. F can be
normalized if and only if the associated Hilbert complex pC‚pP;Fq, δ‚q is bounded and each column of δk

has closed range.

Proof. First, suppose there is a k such that δk : CkpP;Fq Ñ Ck`1pP;Fq is unbounded. Then δk as
a linear function is unbounded for all pairs of Hilbert space norms on the vector spaces CkpP;Fq

and Ck`1pP;Fq. It follows that the sheaf F cannot be normalized. Hence boundedness of each δk

is required.
Next, we prove that when each δk is bounded, F can be normalized if and only if each δk has

closed range. By the closed graph theorem, each δk is necessarily globally defined. Starting from
the highest rank, we modify the inner product structure on each stalk to achieve normalization.
Suppose all cells of rank k`1 have already been normalized; that is, for all τ P P with rpτq ě k`1

and all x,y P Fpτq X kerpδk`1qK, we have xδk`1x, δk`1yy “ xx,yy. Fix a cell σ P P of rank k. To
normalize the stalk Fpσq, take the orthogonal projections P,Q : Fpσq Ñ Fpσq onto kerpδk`1q

and kerpδk`1qK respectively. We may take these projections as kerpδk`1q X Fpσq is topologically
closed. Define a new inner product on Fpσq by

xx,yy˚σ :“ xδkQx, δkQyy˚Ck`1 ` xPx,Pyyσ ,
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where x´, ´yσ is the un-normalized inner product on Fpσq, and x´, ´y˚Ck`1 is the normalized
inner product on Ck`1. The stalk Fpσq is normalized with respect to this new inner product.
Repeating this process inductively normalizes the sheaf.

One may check that this new inner product also induces a Hilbert space structure on Fpσq if
and only if the column of δk that acts on Fpσq has closed range. When this inner product does
induce a Hilbert space structure, the two Hilbert space structures must have equivalent norms.
Let F 1 : P Ñ Hilb0,k denote the normalized sheaf obtained at the end of this inductive procedure.
The natural transformation η : F ñ F 1 given by ησ : x ÞÑ x witnesses that these two Hilbert
sheaves are isomorphic.

Remark 4.7.6. This "every column of δk has closed range" condition is quite restrictive; this will
not hold in general, and neither implies nor is implied by F being a closed Hilbert sheaf.
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5

H I L B E RT S H E A F L A P L A C I A N S

This chapter investigates the spectral properties of Laplacians associated with cellular sheaves
valued in Hilbert spaces. The sheaf Laplacian, defined as the Hodge Laplacian of the Hilbert com-
plex from Chapter 3, encodes local consistency of stalk-wise data and global harmonic structure.
Building on the finite-dimensional theory, the infinite-dimensional setting reveals new phenom-
ena, such as the delicate relationship between closed-range conditions, spectral gaps, and the
solvability of harmonic extension problems. This chapter establishes when the finite-dimensional
results of [54] and [52] generalize.

Section 5.1 introduces the Hilbert sheaf Laplacian Lk “ pδkq˚δk ` δk´1pδk´1q˚ as a closed,
densely defined, positive operator on the space of k-cochains. Its fundamental properties follow
from the general theory of Hodge Laplacians. The kernel consists precisely of harmonic cochains,
which are unitarily isomorphic to reduced cohomology classes. Section 5.2 examines the har-
monic extension problem, wherein one seeks to extend data over a subset of cells, thought of
as a boundary constraint, to a harmonic cochain on the complement of the boundary cells. For
bounded Hilbert sheaves, we establish existence through block operator analysis; for unbounded
sheaves, we employ the theory of shorted operators to characterize when solutions exist. The
analysis reveals that solvability depends crucially on whether boundary data lies in the domain
of a certain quadratic form. Section 5.3 develops the spectral theory of sheaf Laplacians. The
interaction of sheaf morphisms with the Laplacian spectra is explored, establishing spectral con-
tainment relationships. When coboundary operators have closed range, zero becomes an isolated
eigenvalue, and we establish interlacing results for eigenvalues under sheaf morphisms. The
chapter concludes by examining how sheaf operations, particularly direct sums and pullbacks,
interact with Laplacian spectra.

5.1 the hilbert sheaf laplacian

In Section 3.2, we observed that every Hilbert complex has an associated Hodge Laplacian. The
Hodge Laplacian L‚ forms a positive operator on each grade of the Hilbert complex. We be-
gin this chapter investigating the corresponding Laplacian LkpP;Fq that arises from the Hilbert
complex pC‚, δ‚q associated to a Hilbert sheaf F : P Ñ Hilbk.
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Definition 5.1.1. Let F : P Ñ Hilb0,k be a Hilbert sheaf with corresponding Hilbert complex
pC‚, δ‚q. The sheaf Laplacian for F is the chain map L‚ : C‚ Ñ C‚ defined by

Lk :“ pδkq˚δk ` δk´1pδk´1q˚

on k-cochains.

Remark 5.1.2. Since the coboundary map itself depends on the choice of signed incidence relation
on P, the Laplacian does as well.

As the Hodge Laplacian of a Hilbert complex, Theorem 3.2.21 and Theorem 3.2.19 apply to
Hilbert sheaf Laplacians, and give the following properties.

Proposition 5.1.3. Let L‚ be the Hilbert sheaf Laplacian of a Hilbert sheaf F : P Ñ Hilb0,k. L‚ has the
following properties.

(i) Lk is a closed, densely defined, positive operator for each k P N.

(ii) The kernel kerpLkq Ď CkpP;Fq is exactly the k-harmonic space Hk, and is unitarily isomorphic to
the kth-reduced cohomology HkpP;Fq “ kerpδkq{Rpδk´1q.

(iii) In particular, the kernel of L0 is exactly the kernel of δ0, which is unitarily isomorphic to the space
of global sections kerpδ0q.

Example 5.1.4. We return to the simple Hilbert sheaf

L2pRq L2pRq L2pRq

‚ ‚

d
dx

d
dx

from Example 4.4.5. The degree-zero Laplacian L : L2pRq ‘ L2pRq Ñ L2pRq ‘ L2pRq is given by

L

¨

˝

f

g

˛

‚“

¨

˝

d2

dx2
pg´ fq

d2

dx2
pf´ gq

˛

‚

with domain DompLq “ tpf,gqT : d2

dx2
pf´ gq P L2pRqu.
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5.2 harmonic extension

Definition 5.2.1. Let F : P Ñ Hilb0,k be a cellular sheaf of Hilbert spaces, and let U Ď ObpPq be
a collection of objects of rank k in P. We say that a k-cochain x P CkpP;Fq is harmonic on U if
Lkx

∣∣
U

“ 0, where x
∣∣
U

is the orthogonal projection of CkpP;Fq onto the subspace
À

uPU Fpuq.

We have already observed that Hk, the space of k-harmonic cochains, is exactly the kernel of
the sheaf Laplacian Lk, and that the 0-harmonic cochains may be identified with the space of
global sections (Proposition 5.1.3). This identification carries particular significance in the con-
text of cellular sheaves, where the coboundary operator δ0 : C0pP;Fq Ñ C1pP;Fq encodes the
compatibility conditions between local sections. The harmonic cochains represent a natural gen-
eralization of classical harmonic functions to the sheaf-theoretic setting. In the finite-dimensional
case, these cochains admit an explicit characterization through the Hodge decomposition. How-
ever, for Hilbert sheaves with unbounded operators, the relationship between harmonic cochains
and cohomology classes becomes more subtle, particularly when the coboundary maps fail to
have closed range. This motivates the study of harmonic extension problems, wherein we seek
to extend partial data defined on a subcomplex to a harmonic cochain on the entire domain.

The harmonic extension problem naturally arises in several contexts within applied topology.
For instance, when modeling distributed systems or sensor networks via cellular sheaves, one
often possesses measurements or constraints on a subset of nodes and seeks to infer consistent
values throughout the network. The existence and uniqueness of such extensions depend cru-
cially on the spectral properties of the restricted Laplacian operators, as we shall demonstrate.

Definition 5.2.2. Let F : P Ñ Hilb0,k be a Hilbert sheaf, B be a subcomplex of P, and U “

ObpPqzObpBq. A harmonic extension of a k-cochain y P CkpB;Fq is an x P CkpP;Fq such that
pLkxq

∣∣
U

“ 0 and x
∣∣
B

“ y. The harmonic extension problem is to find a harmonic extension
x P CkpP;Fq of a specified cochain y P CkpB;Fq.

Remark 5.2.3. When B is empty, the harmonic extension problem reduces to the problem of
finding a harmonic cochain.
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5.2.1 Bounded harmonic extensions

Analysis of the harmonic extension problem for a bounded Hilbert sheaf is straightforward. In
a slight abuse of notation, write CkpP;Fq “ CkpU;Fq ‘CkpB;Fq for each k. Write the Laplacian
Lk : CkpU;Fq ‘CkpB;Fq Ñ Ck`1pU;Fq ‘Ck`1pB;Fq as a block operator

Lk “

»

–

LkU,U LkU,B

LkB,U LkB,B

fi

fl .

The harmonic extension problem asks us to find w P CkpU;Fq and z P CkpB;Fq such that

»

–

LkU,U LkU,B

LkB,U LkB,B

fi

fl

»

–

w

y

fi

fl “

»

–

0

z

fi

fl .

It suffices to find a w such that LkU,Uw “ ´LkB,Uy. In other words, to show the harmonic extension
problem has a solution for all y, it suffices to show that RpLkU,Bq Ď RpLkU,Uq. With respect to this
same decomposition of k-cochain spaces, we may write

δk “

»

–

δkU,U δkU,B

0 δkB,B

fi

fl ,

where δkB,U “ 0 by the closure property of a subcomplex. We may express the k-Laplacian as

Lk “

»

–

LkU,U LkU,B

LkB,U LkB,B

fi

fl

“

»

–

pδkU,Uq˚δkU,U pδkU,Uq˚δkU,B

pδkU,Bq˚δkU,U pδkU,Bq˚δkU,B ` pδkB,Bq˚δkB,B

fi

fl

`

»

–

δk´1
U,U pδk´1

U,U q˚ ` δk´1
U,B pδk´1

U,B q˚ δk´1
U,B pδk´1

B,B q˚

δk´1
B,B pδk´1

U,B q˚ δk´1
B,B pδk´1

B,B q˚

fi

fl .

Writing T “

”

pδkU,Uq˚ δk´1
U,U δk´1

U,B

ı

and S “

”

pδkU,Bq˚ 0 δk´1
B,B

ı

, we may write LkU,U “ TT˚ and

LkU,B “ TS˚. We have a range inclusion RpTS˚q Ď RpTq. Finally, RpTq “ RpTT˚q if and only if T
has closed range. We now present the following theorem.

Theorem 5.2.4. Let F : P Ñ Hilb0,k be a bounded Hilbert sheaf and B a subcomplex of P. The harmonic
extension problem has a solution for every y P CkpB;Fq if and only if δkU,U, δk´1

U,U , and δk´1
U,B have closed
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ranges. When δk itself has closed range as well, the solution is unique if and only if the mapHkpP,B;Fq Ñ

HkpP; Fq is the zero map.

Proof. We have already established the existence of solutions to the harmonic extension problem.
To establish uniqueness, we must determine when LkU,U is injective. We relate the decomposition
CkpP;Fq “ CkpB;Fq ‘CkpU;Fq to the relative cohomology with respect to B. Since CkpU;Fq “

CkpB;FqK, we may identify CkpU;Fq with the space of relative k-cochains CkpP,B;Fq that vanish
on B. The coboundary operator of the relative Hilbert complex is exactly the block δkU,U in the
block representation of δk; we recover the relative Hilbert complex

¨ ¨ ¨ CkpP,B;Fq Ck`1pP,B;Fq ¨ ¨ ¨
δkU,U

and its Hodge Laplacian ∆k “ pδkU,Uq˚δkU,U ` δk´1
U,U pδk´1

U,U q˚. Looking at the block decomposition
of Lk, we may write LkU,U “ ∆k ` δk´1

U,B pδk´1
U,B q˚. The kernel of a sum of positive operators is the

intersection of the kernels, so kerpLkU,Uq “ kerp∆kq X kerppδk´1
U,B q˚q. Now, consider the map

d : Hk´1pB;Fq Ñ HkpP,B;Fq

from the cohomology long exact sequence on Hodge representatives. The map is given by the re-
striction d :“ δk´1

B,U

∣∣
Hk´1pB;Fq

. Therefore LkU,U is injective if and only if Rpdq is dense in HkpP,B;Fq.
Since δk has closed range, the relative cohomology Hilbert complex is exact at HkpP,B;Fq, so
Rpdq is dense in HkpP,B;Fq if and only if j : HkpP,B;Fq Ñ HkpP;Fq is the zero map.

5.2.2 Unbounded harmonic extension

The preceding analysis of the harmonic extension problem for a bounded Hilbert sheaf does
not directly apply to an unbounded Hilbert sheaf. There are two key difficulties that must be
overcome.

1. Domain splitting. When F : P Ñ Hilb0,k is an unbounded Hilbert sheaf, while the operator
δ̊k splits over the decompositions C‚pP;Fq – C‚pP,B;Fq ‘C‚pB;Fq, there is no guarantee
that the Laplacian Lk does. The restriction pLkxq

∣∣
U

may not be well defined.

2. Well-posedness. When the Laplacian does split, Harmonic extension becomes trivially im-
possible when y P CpB;Fq falls outside the shared domain DompLkU,Bq X DompLkB,Bq.

Nonetheless, well-posed harmonic extension problems for unbounded Hilbert sheaves may
have interpretable solutions.
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Example 5.2.5. Let F : P Ñ Hilb0,k be the Hilbert sheaf

L2pr0, 1sq L2pr0, 1sq L2pr0, 1sq

‚ ‹

d
dx I

with Domp ddxq “ tf P L2pr0, 1sq : f 1 P L2pr0, 1squ. Let t‹u be a one-point subcomplex of P. F is a
proper Hilbert sheaf with Laplacian

L

¨

˝

f

g

˛

‚“

¨

˝

pg´ f 1q 1

g´ f 1

˛

‚

with domain DompLq “ tpf,gqT : f 1 P L2 and pf 1 ´ gq 1 P L2u. Since these derivatives are
weak, this Laplacian can be written in block-matrix form over the decomposition C0pP, t‹u;Fq ‘

C0pt‹u;Fq – L2pr0, 1sq ‘ L2pr0, 1sq as

L “

»

–

´ d2

dx2
d
dx

´ d
dx I

fi

fl .

The range of d
dx is a superset of than the range of d2

dx2
, so the Harmonic extension problem may

fail to have a solution. For a fixed g P C0pt‹u;Fq – L2pr0, 1sq the harmonic extension problem
asks us to find an f P L2pr0, 1sq such that f2 ´ g 1 “ 0. This is satisfied by f “ cx`

ş

g, where
ş

g

is any anti-derivative of g. As expected, the harmonic extension problem has a solution exactly
when g P Rp ddxq. Moreover, the solution when c “ 0 is a harmonic section and f is a solution to
the )(weak) differential equation f 1 “ g.

Following the approach of Arlinskiı̆ [6] for linear relations, we analyze the harmonic extension
problem through the theory of shorted operators. The following analysis also applies to bounded
Hilbert sheaves.

Let F : P Ñ Hilb0,k be a Hilbert sheaf with associated cochain complex pC‚pP;Fq, δ‚q. Let
B be a subcomplex of P, and let P and Q denote the orthogonal projections from CkpP;Fq

onto CkpB;Fq and CkpU;Fq “ CkpB;FqK respectively. Let D :“ Dompδkq X Domppδk´1q˚q. The
coboundary operators δk define a a quadratic form

apu, vq :“ xδku, δkvy ` xpδk´1q˚u, pδk´1q˚vy

on CkpP;Fq ˆCkpP;Fq with domain D ˆ D. When u P DompLkq and v P D, we have apu, vq “

xLku, vy.
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For y P CkpB;Fq, let Ay :“ tx P D : Px “ yu. Note that Ay may be empty. We may rephrase
the harmonic extension problem in terms for the forms aB and a.

Proposition 5.2.6. Let y P CkpB;Fq. u P CkpP;Fq is a solution to the harmonic extension problem for y
if and only if u is a minimizer of qp´q :“ ap´, ´q over Ay.

Proof. We prove the real case; the complex case is similar. Let y P CkpB;Fq. A solution to the
harmonic extension problem for y is an x P CkpB;FqK such that Lkpx ` yq “ z P CkpB;Fq. Set
u :“ x ` y, and let x 1 P CkpB;FqK X D, and consider the quantity

qpu ` x 1q “ }pLkq1{2u}2 ` }pLkq1{2x}2 ` 2xLku, x 1y.

Since Lku K x 1, it follows that qpu ` x 1q ě qpuq, and u minimizes qpuq.
Conversely, suppose that u “ x ` y minimizes q on Ay. For any x 1 P CkpB;FqK X D and t P R,

we have qpu ` tx 1q ě qpuq. Expanding and rearranging yields

2txLku, x 1y ` t2qpx 1q ě 0.

This quadratic in t can only be positive if the linear term 2txLku, x 1y “ 0, from which we conclude
that PLku “ 0, making u a solution to the harmonic extension problem.

Remark 5.2.7. We define a new functional

aBpyq :“ inftapx, xq : x P Ayu

with DompaBq :“ ty P CkpB;Fq : Ay ‰ ∅u. As a minimizer of q, a harmonic extension u realizes
the infimum aBpyq. The quadratic form aBpyq defines an energy functional, which is minimized
by a harmonic extension.

Theorem 5.2.8 ([6, Theorem 3.1]). Let A : X Ñ X be a positive Hilbert space operator, and Y a subspace
of X. The set

ΞpA, Yq :“
␣

Ã a positive operator with Ã ď A and RpÃq Ď Y
(

has a unique maximal element AY , called the shortening of A. The map AY has the following properties.

(i) YK Ď kerAY .

(ii) AY
∣∣
Y

is self-adjoint in Y.

(iii) RpA
1{2
Y q “ RpA1{2q X Y.

Let LkB denote the shortening of the sheaf Laplacian Lk with respect to the subspace CkpB;Fq Ď

CkpP;Fq. We may relate the shortening LkB to the quadratic operator aB by the following propo-
sition, adapted from [77].
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Proposition 5.2.9. There is an equality aBpyq “ xLkBy, yy.

Proof. For each t ě 0, let Bt :“ pLk : tPq denote the parallel sum of positive operators [6,
Definition 4.1]. Since tP is bounded, each parallel sum Bt is a bounded, positive operator. The Bt
operators have strong resolvent limit

SR- lim
tÑ8

Bt “ LkB

by [6, Theorem 4.3]. Moreover, by the idempotence of shorting and [6, Proposition 3.2], it fol-
lows that SR- limtÑ8pBtqB :“ pLkBqB “ LkB. Since each pBtqB is bounded and positive, they
generate a globally defined, non-negative quadratic form btpxq “ xpBtqBx, xy. Moreover, this
family is bounded below by zero, and is monotonically increasing in t. For each x P DompLkBq,
Kato’s monotone convergence theorem for quadratic forms ([73, Theorem VIII.3.13a]) ensures
limtÑ8 btpxq “ xLkBx, xy.

Conversely, since each operator pBtqB is bounded, we may apply Kreı̆n’s variational identity
[77]:

btpxq “ inf
yPBK

txpBtqBpx ` yq, x ` yyu .

The quantity on the right hand side is monotonically increasing in t for each x, from which
we may conclude that limtÑ8 btpxq “ aBpxq for all x P DompLkBq. This identity may be weakly
extended to x P Dom

`

pLkBq1{2
˘

.

Corollary 5.2.10. The harmonic extension problem has a solution at y if and only if y P DompaBq.
Moreover, y P DompLkBq if and only if the energy minimizer u “ y ` x belongs to DompLkq, and
z :“ PLku “ LkBy is determined uniquely.

5.3 laplacian spectra

We begin by summarizing some properties of the domains and ranges of the up and down
Laplacians respectively.

Proposition 5.3.1. Let Ck “ Bk ‘ Hk ‘ ZkK denote the weak Hodge decomposition for the space of
k-cochains. The following hold.

(i) RpLk´q Ď Bk Ď kerpLk`q “ kerpδkq.

(ii) RpLk`q Ď ZkK Ď kerpLk´q “ kerppδk´1q˚q.

(iii) Hk “ kerpLk`q X kerpLk´q “ kerpLkq.
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Proof. Since all four operators δk and δk´1 are closed operators (and hence closed kernels closed
kernels) with Rpδk´1q Ď kerpδkq, we immediately recover Bk Ď kerpδkq. A similar argument with
the adjoints pδkq˚ and pδk´1q˚ (plus a use of the identity kerpAqK “ RpA˚q for a closed operator
A) yields the second item. The third item is the main content of the proof of Theorem 3.2.21.

Corollary 5.3.2. The up and down Laplacians Lk` and Lk´ restrict to maps:

Lk`
∣∣
ZkK : ZkK Ñ ZkK ,

Lk´
∣∣
Bk : Bk Ñ Bk .

When clear from context, we will use Lk` and Lk´ to refer to both the up/down-Laplacian and
its restriction. We are now able to begin analyzing the spectrum of the sheaf Laplacian Lk.

Proposition 5.3.3. 0 is not an eigenvalue of Lk`
∣∣
ZkK nor Lk´

∣∣
Bk . If δk (resp. δk´1) has closed range, then

0 is not in the spectrum σpLk`
∣∣
ZkKq (resp. σpLk´

∣∣
Bkq).

Proof. We prove the result for the restricted up-Laplacian Lk` : ZkK Ñ ZkK; the corresponding
argument for the down-Laplacian is essentially identical. Since ZkK K kerpLk`q XZkK, zero cannot
be an eigenvalue. If Rpδkq is closed, the closed range theorem guarantees that δk is bounded
below on ZkK; there is a c ą 0 such that }δkx} ě c}x} for all x P ZkK X Dompδkq. The up-
Laplacian on ZkK X DompLk`q is bounded below by c2I, as xL`

kx, xy “ }δkx}2 ě c2}x}2. It follows
that L`

k ´ c2I is a positive operator. 0 R σpL`
k q since σpL`

k ´ c2Iq “ σpL`
k q ` c2.

Proposition 5.3.4. The spectrum of Lk is given by σpLkq “ t0u YσpLk`q YσpLk´q. Moreover, if Rpδk´1q

and Rpδkq are closed, then σpLkqzt0u “ σpLk`
∣∣
ZkKq Y σpLk´

∣∣
Bkq.

Proof. The weak Hodge decomposition Ck “ Bk ‘ Hk ‘ ZkK can equivalently be written as
Ck “ Rpδk´1q ‘ kerpLkq ‘ Rppδkq˚q. Utilizing the identities of Proposition 5.3.1, the operator
Lk : Ck Ñ Ck can be written as a block-diagonal operator

Lk “

»

—

—

—

–

Lk´
∣∣
Bk 0 0

0 0 0

0 0 Lk`
∣∣
ZkK

fi

ffi

ffi

ffi

fl

.

It easily follows that the spectrum of Lk is the union of the spectra of the blocks: σpLkq “

t0u Y σpLk`q Y σpLk´q. When δk´1 and δk have closed range, Proposition 5.3.3 ensures that zero
is not in the spectra of the restricted up/down-Laplacians.
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Corollary 5.3.5. Suppose that δk and δk´1 both have closed range. Then 0 is an isolated eigenvalue of
Lk.

Proof. In the proof of Proposition 5.3.3, we saw that when δk and δk´1 have closed ranges,
the spectra of the restricted up/down-Laplacians are bounded away from zero. Hence Propo-
sition 5.3.4 proves that 0 P σpLkq is an isolated eigenvalue.

Proposition 5.3.6. σpLk`
∣∣
ZkKq “ σpLk´1

´

∣∣
Bk´1q.

Proof. Using the polar decomposition [100, Theorem VIII.32], we may write δk “ U
b

Lk`, where

U : Ck Ñ Ck`1 is a partial isometry with initial space kerpδqK and final space Rpδkq, and
b

Lk` is

the unique self-adjoint operator such that
b

Lk` ˝

b

Lk` “ Lk`. We may now compute:

Lk`1
´ “ δkpδkq˚

“

ˆ

U

b

Lk`

˙ˆ

b

Lk`U
˚

˙

“ ULk`U
˚.

U restricts to a unitary map U : ZkK Ñ Bk`1, so σpLk`
∣∣
ZkKq “ σpLk´1

´

∣∣
Bk´1q have the same

spectra.

Remark 5.3.7. It also follows from the same argument that Lk`
∣∣
ZkK and Lk´1

´

∣∣
Bk´1 have the same

eigenvalues. Moreover, the eigenvectors may be related by the following chain of implications:

x P ZkK X DompLk`q is an eigenvector of Lk` ðñ pδkq˚δkx “ λx

=ñ δkpδkq˚δkx “ λδkx

ðñ Lk`1
´ δkx “ λδkx.

These eigenvectors x and δkx have the same eigenvalue.

5.3.1 Morphisms

Let F and G be Hilbert sheaves on the same GAC P. The existence of a spectrally well-behaved
Hilbert sheaf morphism ϕ : F Ñ G enforces a relationship between the spectra of Hilbert sheaf
Laplacian. We catalog a few results that relate the spectra σpLkFq and σpLkGq in the presence of
morphisms with different properties.
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Definition 5.3.8. Let ϕ‚ : pX‚,V‚
X, δ‚

Xq Ñ pY‚,V‚
Y , δ‚

Yq be a Hilbert complex morphism. ϕ‚ is a bi-
morphism if ϕ‚ is also a Hilbert complex morphism of the dual complexes ϕ‚ : pX‚,V˚

X,‚,dX,‚q Ñ

pY‚,V˚
Y,‚,dY,‚q.

Bimorphisms constitute a class of Hilbert space morphisms that respect the sheaf Laplacian
and its up/down components.

Lemma 5.3.9. Suppose ϕ : F Ñ G is a Hilbert complex morphism whose induced Hilbert complex
morphism ϕ‚ : pC‚pP;Fq, δ‚

Fq Ñ pC‚pP;Gq, δ‚
Gq is a bimorphism. Then for each k, ϕkLkF,` “ LkF,`ϕ

k,
ϕkLkF,´ “ LkF,´ϕ

k, and ϕkLkF “ LkFϕ
k.

Proof. Using the bimorphism property of ϕ‚, we may check:

ϕkLkF,` “ pδkGq˚ϕk`1δkF

“ LkG,`ϕ
k.

Similarly, ϕkLkF,´ “ LkG,´ϕ
k. By linearity, ϕkLkF “ LkGϕ

k.

Proposition 5.3.10. Let ϕ : F Ñ G be a Hilbert complex morphism whose induced chain map ϕ‚ is a
bimorphism. If ϕk is an isometry, then σpLkFq Ď σpLkGq. If ϕk is a co-isometry, then σpLkGq Ď σpLkFq.

Proof. As a bimorphism, we have ϕkLkF “ LkGϕ
k. If ϕk is an isometry, precomposing with

pϕkq˚ yields LkF “ pϕkq˚LkGϕ
k. The closed image M :“ Rpϕkq is an invariant subspace of LkG,

in the sense that if x P Rpϕkq X DompLkGq, then LkGx P Rpϕkq. It follows that pϕkq˚LkGϕ
k “

pϕkq˚
`

LkG

∣∣
M

˘

ϕk. The map ϕk is unitary onto its image, and σpLkFq “ σpLkG

∣∣
M

q Ď σpLkGq. The
proof for a co-isometric ϕk is similar.

Corollary 5.3.11. Let ϕ : F Ñ G be a Hilbert complex morphism whose induced chain map ϕ‚ is a
bimorphism. If ϕk is unitary, then σpLkFq “ σpLkGq.

5.3.2 Eigenvalues

Hilbert sheaf morphisms between Hilbert sheaves also offer control over the eigenvalues of the
sheaf Laplacians. The control offered is especially meaningful when the Hilbert sheaf Laplacian
has discrete spectrum consisting of primarily eigenvalues.

Example 5.3.12. Let S1 :“ tx P R2 : }x} “ 1u denote the unit circle in R2, and consider the
Hilbert sheaf

L2pS1q L2pS1q L2pS1q

‚ ‚

d
dx

d
dx
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with Lebesgue measure. This is a Hilbert sheaf by Theorem 4.4.17. A similar computation to
Example 6.1.8 shows the Laplacian L : L2pS1q ‘ L2pS1q Ñ L2pS1q ‘ L2pS1q is given by

L

¨

˝

f

g

˛

‚“

¨

˝

d2

dx2
pg´ fq

d2

dx2
pf´ gq

˛

‚

where d2

dx2
denotes weak differentiation on L2pS1q. The domain of L is the Sobolev space H2pS1q.

Under the unitary change of variables ps, tqT “ p
f`g
?
2

, g´f
?
2

qT , the Laplacian L takes the form

L “

»

–

0 0

0 ´2 d
2

dx2

fi

fl .

We may now analyze the spectrum of L component-wise. The first diagonal block 0 : L2pS1q Ñ

L2pS1q has spectrum σp0q “ t0u: an eigenvalue of infinite multiplicity. The second diagonal block
´2 d

2

dx2
: L2pS1q Ñ L2pS1q is a scaling of the usual Laplacian on the unit circle, and has spectrum

of all eigenvalues σp´2 d
2

dx2
q “ t2k2 : k ě 0u, where 0 has multiplicity 1, and all other eigenvalues

have multiplicity 2. Therefore, the spectrum of L is given by

σpLq “ t0u Y t2k2 : k ě 1u .

σesspLq “ t0u, and each positive value is an eigenvalue of multiplicity 2.

Remark 5.3.13. More generally, consider a network sheaf F of differential operators as in The-
orem 4.4.17. The Hilbert sheaf Laplacian L is a (weak) differential operator on the direct sum
bundle of the vertex stalks. If the manifold underlying the smooth vector bundle on each vertex
stalk is compact, and the Laplacian L is elliptic on kerpLqK, Then the spectrum σpLq will have
the form

σpLq “ t0u Y tλk : k ě 1u

where σesspLq “ 0, and each λk is an isolated positive eigenvalue of finite multiplicity.

Notation 5.3.14. Let A : X Ñ X be a Hilbert space operator. Let MpA, λq denote the (cardinal)
multiplicity of λ P C as an eigenvalue in the spectrum σpAq.

Proposition 5.3.15. Let ϕ : F Ñ G be a Hilbert sheaf morphism with induced chain map ϕ‚ : C‚pP;Fq Ñ

C‚pP;Gq. If ϕk is an isometry for each k, then MpLkF,`, 0q ď MpLkG,`, 0q. If ϕ‚ is an isometric bi-
morphism, then additionally MpLkF,´, 0q ď MpLkG,´, 0qMpLkF, 0q ď MpLkG, 0q. Similarly, if ϕk is a
co-isometry for each k, then MpLkG,`, 0q ď MpLkF,`, 0q. If ϕk is a co-isometric bimorphism, then addition-
ally MpLkG,´, 0q ď MpLkF,´, 0q, and MpLkG, 0q ď MpLkF, 0q.
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Proof. ϕk maps cochains in kerpLkF,`q into kerpLkG,`q. If ϕk is an isometry, then dim kerpLkF,`q is
bounded above by dim kerpLkG,`q, and MpLkF,`, 0q ď MpLkG,`, 0q. When ϕ‚ is a bimorphism, ϕk

must map the space of harmonic cochains HkF into HkY . When ϕk is an isometry, it follows that
MpLkF, 0q ď MpLkG, 0q. The argument for co-isometries is similar.

Remark 5.3.16. If ϕ is merely an injection on the kth grade, then MpLkF,`, 0q ď MpLkG,`, 0q. If ϕ is
merely a surjection on the kth grade, then MpLkF,`, 0q ě MpLkG,`, 0q

This result is not, in general, useful for understanding the Hilbert sheaf Laplacian. In general,
unless the images of restriction maps intersect in finite dimensional subspaces, the multiplicity
of zero as an eigenvalue of the sheaf Laplacian will be infinite. A more useful theorem for the
analysis of eigenvalues is the Courant-Fischer theorem [106, Theorem 12.1].

Theorem 5.3.17 (Courant-Fischer theorem). Let A : X Ñ X be a positive operator on a Hilbert space
X. The eigenvalues of A (counted with multiplicity) lying below the essential spectrum σesspAq may be
enumerated in increasing order λ1 ď λ2 ď ¨ ¨ ¨ . The jth eigenvalue λj is given by the formula

λj “ inf
VĎX

dimpVq“j

sup
xPVXDompAq

x‰0

xAx, xy

}x}2
.

Remark 5.3.18. For any compact interval I Ď R lying below the essential spectrum σesspAq, there
can be at most finitely many eigenvalues of A lying in I.

Proposition 5.3.19. Suppose ϕ : F Ñ G is a Hilbert sheaf morphism whose induced chain map ϕ‚

is an isometric bimorphism. Let L̃kF and L̃kG denote the restrictions of LkF and LkG to the orthogonal
complements kerpLkFqK and kerpLkGqK respectively. Order the eigenvalues tλju of L̃kF and tµju of L̃kG,
below the essential spectra, in increasing order. The following hold.

(i) tλju and tµju can be put in one-to-one correspondence.

(ii) µj ď λj.

(iii) If ϕkpkerpLkFqKq has finite codimension r ă 8 in kerpLkGqK, then µj`r ě λj.

Proof. Let L̃kF and L̃kG denote the restrictions of LkF and LkG to the orthogonal complements
kerpLkFqK and kerpLkGqK respectively. Enumerate the eigenvalues of L̃kF and L̃kG below the es-
sential spectra in increasing order by tλjuj and tµiui respectively.

As a bimorphism, ϕk and pϕkq˚ commutes with each grade of the Laplacian: ϕkLkF “ LkGϕ
k

and LkFpϕkq˚ “ pϕkq˚LkG. For y P kerpLkGq we have pϕkq˚y P kerpLkFq. It follows that for
x P DompL̃kFq and y P kerpLkGq, that ϕkpxq K y, and hence ϕkpDompL̃kFqq Ď DompL̃kGq. M :“

ϕkpkerpLkFqKq is a stable subspace of L̃kG.
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Using injectivity, each eigenvector ψ of LkF is mapped to a unique eigenvector ϕkpψq of ˜calLkG .
Therefore the eigenvalues tλjuj and tµjuj can be placed in one-to-one correspondence. Further,
since ϕk is unitary onto its image, the eigenvalues of L̃kF are exactly the eigenvalues of L̃kG

∣∣
M

.
It follows from the Courant-Fischer theorem that µj ď λj, for all j. In particular, every subspace
V Ď kerpLkFqK of dimension j is mapped by ϕk to a subspace ϕkpVq Ď kerpLkGqK of dimension j.
Further, V X DompLkFq is mapped by ϕk into ϕkpVq X DompLkGq. There is an equality

sup
xPVXDompLkFq

x‰0

xLkFx, xy

}x}2
“ sup
yPϕkpVqXDompLkGq

y‰0

xLkGy,yy

}y}2
.

It immediately follows that µj ď λj.
Finally, suppose that M has finite codimension r ă 0 in kerpLkGqK. It directly follows from the

min-max formulation that if λj “ µj, there can be at most r eigenvalues µk between λj and λj`1.
That is, µj`r ě λj for all j.

5.3.3 Sheaf operations

Several of the sheaf operations (Section 4.5) interact with the Laplacian spectra in controlled ways.
The direct sum is the most straightforward.

Proposition 5.3.20. Let F,G : P Ñ Hilb0,k be Hilbert sheaves. The sheaf Laplacian of the direct sum
F ‘ G satisfies

σ
`

LkF‘G

˘

“ σ
`

LkF
˘

Y σ
`

LkG
˘

.

Proof. As observed in Proposition 4.5.3, the coboundary operator of F ‘ G decomposes as

δ̊kF‘G “ diagpδ̊kF, δ̊kGq : CkpP;Fq ‘CkpP;Gq −Ñ Ck`1pP;Fq ‘Ck`1pP;Gq.

This diagonal operator acts on CkpP;Fq and CkpP;Gq independently, so δkF‘G “ diagpδkF, δkGq and
LkF‘G “ diagpLkF,LkGq. Therefore σ

`

LkF‘G

˘

“ σ
`

LkF
˘

Y σ
`

LkG
˘

.

Pullbacks by covering maps also have well-behaved spectral properties for Bounded Hilbert
sheaves.

Proposition 5.3.21. Let ϕ : P Ñ Q be a covering morphism of GACs, and F : Q Ñ Hilbk a bounded
Hilbert sheaf. There is an inclusion of spectra σ

`

LkF
˘

Ď σ
´

Lkϕ˚F

¯

.

Proof. The map ϕ induces a cochain map pΦ˚q‚ : C‚pQ;Fq Ñ C‚pP;ϕ˚Fq defined by

`

pΦ˚qkpxq
˘

τ
“ xϕpτq
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for each τ P CkpQ;Fq. We first confirm that Φ˚ is a bimorphism of Hilbert complexes. By the
definition of a covering map, one may check that for each τ P Ck`1pP;ϕ˚Fq and x P CkpQ;Fq,

`

δkϕ˚FpΦ˚qkx
˘

τ
“

ÿ

σ 1◁1τ
g:σ 1Ñτ

ϵϕ˚FpgqFϕpgqpxϕpσ 1qq

“
ÿ

σ◁1ϕpτq

f:σÑϕpτq

ϵFpfqFfpxσq

“
`

pΦ˚qk`1δkFx
˘

τ
,

which demonstrates that δkϕ˚FpΦ˚qk “ pΦ˚qk`1δkF. A similar computation utilizing the pre-image
property of covering maps shows that pδkϕ˚Fq˚pΦ˚qk`1 “ pΦ˚qkpδkFq˚, makingΦ˚ a Hilbert space
bimorphism.

Next, observe that pΦ˚qk is a scaled isometry; identifying CkpP;ϕ˚Fq –
ÀnCkpQ;Fq, the map

pΦ˚qkpxq “
Àn x. It directly follows that 1?

n
pΦ˚qk : CkpQ;Fq Ñ CkpP;ϕ˚Fq defines an isometric

bimorphism. By Proposition 5.3.10, σ
`

LkF
˘

Ď σ
´

Lkϕ˚F

¯

.
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Part III

D Y N A M I C S
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6

L I N E A R D Y N A M I C S

This chapter investigates dynamical systems on cellular sheaves valued in Hilbert spaces, fo-
cusing on heat flow and wave propagation. The sheaf Laplacian introduced in Chapter 5 natu-
rally generates a heat equation and a wave equation on cochain spaces, whose solutions exhibit
asymptotic behavior controlled by the spectral properties of the Laplacian. Beyond the classical
heat flow and wave propagation on cochains, we explore two dynamical systems unique to the
sheaf-theoretic setting: relative heat flows that solve harmonic extension problems dynamically,
and restriction map diffusion that evolves the sheaf structure itself toward a collection of re-
striction maps admitting a prescribed global section. These linear dynamics provide distributed
algorithms for solving networked systems of equations.

Section 6.1 establishes that the negative sheaf Laplacian ´Lk generates a contraction semi-
group via the Lumer-Phillips theorem, yielding well-posed heat flows for all initial cochains. The
long-term behavior of these flows is characterized through spectral decomposition: heat flows
converge to orthogonal projections onto harmonic cochains, with convergence in the strong op-
erator topology for general Hilbert sheaves and in operator norm for closed sheaves with spec-
tral gaps. Section 6.1.2 adapts the heat flow to solve harmonic extension problems dynamically.
Given boundary data on a subcomplex, we construct relative heat flows that either converge
to harmonic extensions when they exist, or diverge when the problem is ill-posed. Section 6.2
introduces a dynamical system that evolves restriction maps rather than cochains. For network
sheaves with fixed stalks, we derive gradient flows on spaces of bounded operators. The analysis
distinguishes between general Banach space settings and the geometric case of Hilbert-Schmidt
operators, the latter of which can be identified as a heat flow of a different sheaf Laplacian. Sec-
tion 6.2.2 examines joint dynamics where cochains and restriction maps evolve simultaneously
as a coupled system. The chapter concludes with an analysis of the wave equation on a Hilbert
sheaf. Unlike heat flow, wave propagation does not converge, instead exhibiting oscillatory be-
havior, the time-average of which is a harmonic cochain.

6.1 heat flow

Let F : P Ñ Hilb0,k be a Hilbert sheaf with associated Hilbert complex
`

C‚pP;Fq, δ‚
˘

. Each grade
of the sheaf Laplacian Lk is a positive operator (Theorem 3.2.21). Using the spectral theorem
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and the Lumer-Phillips theorem, one may show that ´Lk is the infinitesimal generator of a
contraction semigroup on CkpP;Fq. We prove this as a general lemma.

Lemma 6.1.1. Let A : X Ñ X be an operator on a separable Hilbert space. If A is negative, then A is the
infinitesimal generator of a contraction semi-group.

Proof. We present the proof for real Hilbert spaces, as the argument can be straightforwardly
adapted to complex Hilbert spaces. Let pΩ,µq, Φ : X Ñ L2pΩ;µq, and f : Ω Ñ R satisfy the con-
ditions of the spectral theorem for A. If Mf generates a contraction semigroup T on L2pΩ,µ; Rq,
then ΦTΦ´1 is a contraction semigroup on X with generator A. Hence it suffices to check that
Mf satisfies the conditions of the Lumer-Phillips theorem.
Mf is self-adjoint, and hence is densely defined. Since fpωq ď 0 for µ-almost every ω P Ω, Mf

is dissipative. Finally, every positive λ P R is in the resolvent ρpMfq. Since Mf is closed, it follows
that Mf ´ λI is a surjection for all λ ą 0. Therefore Mf generates a contraction semigroup on
L2pΩ,µ; Rq.

Applying Lemma 6.1.1 to ´Lk shows that ´Lk is the infinitesimal generator of a contraction
semigroup on CkpP;Fq.

Definition 6.1.2. Let F : P Ñ Hilb0,k be a Hilbert sheaf with sheaf Laplacian Lk. The kth-heat
semigroup of F is the semigroup expp´tLkq on CkpP;Fq. Given a k-cochain x0 P CkpP;Fq, the
heat flow of x0 is the path

xt “ expp´tLkqx0.

As a C0-semigroup, the heat flow xt “ expp´tLkqx0 is a mild solution to initial value problem:

9x “ ´Lkx ,

xp0q “ x0 .

In particular, when x0 P DompLkq, the heat flow is a classical solution to the initial value problem.

6.1.1 Long term behavior of the heat flow

Since the heat semigroups of a cellular sheaf F are generated by a negative operator, we get an
additional property: controlled dynamics as t Ñ 8. We start with a general lemma.

Lemma 6.1.3. Let etA be a contraction semigroup on a separable Hilbert space X generated by a negative
operator A : X Ñ X. Let P : X Ñ X denote the orthogonal projection onto the kernel kerpAq. As t Ñ 8,
the semigroup etA converges to P in the strong operator topology.
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Proof. Let pΩ,µq, Φ : X Ñ L2pΩ,µ; Rq and f : Ω Ñ R satisfy the conditions of the spectral
theorem for A. Notice that T0ptq :“ Mexpptfq defines a contraction semigroup on L2pΩ,µ; Rq

with generator Mf. For any k P kerpMfq, the support supppkq must be contained in the set
tω P Ω : fpωq “ 0u, up to a set of a measure zero. It follows that Mexpptfqk “ k for all t ě 0.
Now for any g P kerpMfq

K Ď L2pΩ,µ; Rq, the function Gt “ expp2tfqg2 converges pointwise
to 0 almost everywhere as t Ñ 8 since the essential range of f is non-positive. Moreover, Gt is
dominated by g2, which is integrable. The dominated convergence theorem now ensures that

lim
tÑ8

}Mexpptfqg}2 “ lim
tÑ8

ż

Gt dµ “ 0.

Therefore Mexpptfq converges to the orthogonal projection onto the kernel of Mf in the strong
operator topology. Identifying etA “ Φ´1MexpptfqΦ proves that etA Ñ P in the strong operator
topology as well.

Lemma 6.1.4. The result of Proposition Lemma 6.1.3 holds when X is not separable as well.

Proof. Suppose X is not separable. We use Zorn’s lemma to prove that X can be decomposed into
a (possibly uncountable) direct sum X “

À

iPIWi where each Wi is separable and A is stable on
each Wi.

Let D denote the collection of all decompositions X “ p
À

iPIWiq ‘ Z, that satisfies the follow-
ing conditions.

1. Each Wi is non-empty and separable.

2. A is invariant on Z and on each Wi.

3. Either Z “ 0 or Z is not separable.

We may partially order D according to the following rule:

«˜

à

iPI

Wi

¸

‘Z ď

˜

à

jPJ

W 1
j

¸

‘Z 1

ff

ðñ

”

D an injective map f : I ãÑ J s.t. Wi “ W 1
fpiq

ı

.

That is, the J-decomposition further peels off more separable Hilbert spaces from Z. Since every
chain in D is bounded, we may use Zorn’s lemma to take a maximal decomposition in D.

Now suppose p
À

iPIWiq ‘ Z is a decomposition and Z ‰ 0. Take v P Z to be any non-zero
vector, and λ P ρpAq be any value in the resolvent set with corresponding operator Rλ :“ pA´

λIq´1. Let rvs :“ tv,Rλv,R2λv, . . .u denote the orbit of v under Rλ, and set

Zv :“ spanrvs.
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The space Zv is closed, A-invariant, and has a countable basis given by rvs, making it an invariant
separable sub-Hilbert space of Z. Moreover dimpZvq ě 1. Consequently,

˜

à

iPI

Wi

¸

‘Z ď

˜

à

iPI

Wi

¸

‘Zv ‘ pZK
v XZq.

Thus if Z ‰ 0, the decomposition cannot be maximal. Therefore the maximal decomposition from
Zorn’s lemma is a decomposition of X into separable, stable, subspaces.

Applying the separable case on each component proves the general result. Let X “
À

iPIWi

be a decomposition of X into separable sub-Hilbert spaces such that ApWiq Ď Wi for each i P I.
For x P X, there is a countable sub-index set J Ď I such that x0 “

ř

jPJpx0qj, where each px0qj

is the Wj component of x0. By the separable case, each etApx0qj Ñ 0 as t Ñ 8. It follows that
etAx0 Ñ 0 as well.

We now return to the Hilbert sheaf Laplacian Lk : CkpP;Fq Ñ CkpP;Fq. The application of
Lemma 6.1.4 to the kth heat semigroup yields the following theorem.

Theorem 6.1.5. The kth heat semigroup expp´tLkq converges in the strong operator topology as t Ñ 8

to the orthogonal projection operator P : CkpP;Fq Ñ CkpP;Fq onto the space Hk of k-harmonic cochain.
In particular, for all x0 P CkpP;Fq, the heat flow xt converges to the nearest harmonic cochain as t Ñ 8.

Corollary 6.1.6. A heat flow in C0pP;Fq with initial value x0 converges to the nearest global section to
x0.

Remark 6.1.7. When the Hilbert sheaf F : P Ñ Hilb0,k is not proper, there is no guarantee that
the kernel of the block operator δ̊k is closed; hence kerpδ̊kq may be merely a dense linear subspace
of kerpδkq “ Hk, and the limit limtÑ8 xt of a heat flow on CkpP;Fq may not be in the kernel of
the block operator δ̊k. This represents a genuine distinction from the finite dimensional theory of
dynamics on weighted sheaves. However, when F : P Ñ Hilbk is a bounded sheaf, convergence
to a point in the kernel of the block operator δ̊k is guaranteed.

Example 6.1.8. We return again to the simple Hilbert sheaf

L2pRq L2pRq L2pRq

‚ ‚

d
dx

d
dx
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from Example 4.4.5 and Example 5.1.4. The heat flow pft,gtqT P L2pRq ‘ L2pRq with initial value
pf0,g0qT obeys the differential equation

¨

˝

9f

9g

˛

‚“

¨

˝

d2

dx2
pf´ gq

d2

dx2
pg´ fq

˛

‚.

Making the change of variables

ut “ ft ` gt

vt “ ft ´ gt,

we may compute 9u “ 0 and 9v “ ´2 d
2

dx2
v. That is, vt obeys the heat equation on R, and dissipates

to 0 as t Ñ 8. Hence taking limits, we see that f8 ` g8 “ f0 ` g0 and f8 ´ g8 “ 0. It follows
that f8 “ g8 “

f0`g0
2 .

Example 6.1.9. LetM be a compact real Riemannian manifold with canonical volume form µ. Let
L2pM;µq denote the space of square integrable real-valued functions onM. The Laplace-Beltrami
operator ∆LB is the operator ∆ “ d˚d, where d : L2pM;µq Ñ L2pT˚Mq is the gradient operator.
The domain of ∆LB is taken to be the maximal domain. We get a Hilbert sheaf

L2pM;µq L2pT˚Mq 0

‚ ‚

d 0

with coboundary operator δ “

”

´d 0

ı

. This is sheaf is proper, with corresponding sheaf Lapla-
cian

L “

»

–

´∆LB 0

0 0

fi

fl .

The induced heat flow ft “ exppt∆LBq is the usual Laplace-Beltrami based heat flow on f P

L2pM;µq, and ft converges as t Ñ 8 to the nearest harmonic function in L2pM;µq. Hence the
usual Laplace-Beltrami heat flow may be recognized as a special case of heat flow on a Hilbert
sheaf.
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Example 6.1.10. Consider the Hilbert sheaf

L2pr0, 1sq L2pr0, 1sq ‘ L2pr0, 1sq L2pr0, 1sq

‚ ‚ ‚

»

—

—

–

d
dx

I

fi

ffi

ffi

fl

»

—

—

–

I

I

fi

ffi

ffi

fl

with corresponding sheaf Laplacian

L “

»

–

I´ d2

dx2
d
dx ´ I

´ d
dx ´ I I

fi

fl

on domain H2pr0, 1sq ‘H1pr0, 1sq Ď L2pr0, 1sq ‘ L2pr0, 1sq. The induced heat flow pft,gtqT con-
verges to the nearest point pf8,g8qT such that f 1

8 ´ g8 “ 0 and f8 ´ g8 “ 0. That is, f8 must be
a weak solution to the ODE f 1

8 “ f8, so f8pxq “ Cex almost everywhere for some C P R.

Example 6.1.11. Let G “ pV,Eq be a finite network and F : G Ñ Hilb0,k be a Hilbert sheaf of
differential operators, as in Theorem 4.4.17. Let Bσ Ñ Mσ denote the smooth vector bundle on
each object σ P E Y V. The coboundary operator δ : C0pG;Fq Ñ C1pG;Fq decomposes as a block
operator δ “ rδevs over vertex-stalks and edge-stalks; for v a bounding vertex of an edge e, the
block δev : Fpvq Ñ Fpeq is given by

δev “
ÿ

f:vÑe

ϵpfqFf .

This is a (weak) differential operator and the coboundary operator encodes a networked system
of homogeneous linear differential equations. A global section x of F exactly corresponds to a
solution to this networked system; for each edge e with distinct bounding vertices u, v, xu and
xv are smooth sections of Bu and Bv respectively such that δeuxu “ δevxv. For an edge e with a
unique bounding vertex v, we instead recover δevxv “ 0. The heat flow of F exactly converges to
such a solution to the networked differential equation.

The rate of convergence of heat flow is controlled by the spectrum of the sheaf Laplacian Lk

through the following theorem.

Proposition 6.1.12. Let F : P Ñ Hilb0,k be a Hilbert sheaf. Suppose either 0 R σpLkq, or 0 is an isolated
eigenvalue in σpLkq. The heat semigroup expp´tLkq converges in the operator norm to the orthogonal
projection operator P : CkpP;Fq Ñ CkpP;Fq onto Hk.
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Proof. Let L̃k : kerpLkqK Ñ kerpLkqK denote the restriction of Lk to the orthogonal complement
of its kernel. Since 0 is an isolated eigenvalue of Lk, there is an r ą 0 such that λ ą r for all
λ P σpL̃kq. By the spectral theorem, we may bound } expp´tL̃kq}op ď e´tr, from which it follows
that expp´tL̃kq Ñ 0 in the operator norm. It directly follows that expp´tLkq converges to P in
the operator norm.

Remark 6.1.13. In the preceding proof, the larger the value of r ą 0, the faster the convergence
of expp´tLkq

op−Ñ P. Hence we see that the rate of convergence is controlled by infσpL̃kq. When
infσpL̃kq “ 0, the convergence is merely in the strong topology, and distance bounds for cochains
cannot be given uniformly in norm.

The following corollary follows since closed Hilbert sheaves have spectral gaps (Corollary 5.3.5).

Corollary 6.1.14. When F : P Ñ Hilb0,k is a closed Hilbert sheaf, each heat semigroup expp´tLkq

converges in the operator norm to the orthogonal projection Pk onto k-harmonic cochains.

6.1.2 Relative heat flows and harmonic extension

Let F : P Ñ Hilb0,k be a Hilbert sheaf, and B be a subcomplex of P. Suppose the domain of the
sheaf Laplacian L splits over the decomposition CkpP;Fq – CkpP,B;Fq ‘CkpB;Fq, and write

L “

»

–

LkU,U LkU,B

LkB,U LkB,B

fi

fl .

Given y P CkpB;Fq, we may try to form a heat flow for x P CkpP,B;Fq that converges to a
harmonic extension of y. The dynamics of x should obey

9x “ ´LkU,Ux ´ LkU,By.

We may again use semigroup theory to tackle this problem. Note that LkU,U can be extended to a
positive operator; it is positive symmetric and densely defined, and has a self-adjoint Friedrichs
extension. Hence ´LkU,U is the infinitesimal generator of a contraction semigroup expp´tLkU,Uq on
CkpP,B;Fq. As observed in Section 5.2, y will have a harmonic extension exactly when LkU,By P

RpLkU,Uq. When this is the case, take w such that LkU,Uw “ LkU,By, and define the relative heat flow
of x0 P CkpP,B;Fq to be the path:

xt “ expp´tLkU,Uqpx0 ` wq ´ w. (1)
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One may check that this is a mild solution to the initial value problem:

9x “ ´LkU,Ux ´ LkU,By ,

xp0q “ x0.

The path xt is well-behaved asymptotically. By Lemma 6.1.4, expp´tLkU,Uq converges in the strong
operator topology to the orthogonal projection operator P onto the kernel kerpLkU,Uq as t Ñ 8. It
follows by some simple geometry that x8 “ Ppx0` wq ´ w is the closest point to x0 in CkpP,B;Fq

that solves the harmonic extension problem for y. We have proven the following theorem.

Theorem 6.1.15. Let F : P Ñ Hilb0,k be a Hilbert sheaf, and B be a subcomplex of P. Suppose the
domain of the sheaf Laplacian L splits over the decomposition CkpP;Fq – CkpP,B;Fq ‘CkpB;Fq. Let
y P CkpB;Fq and w P CkpP,B;Fq such that LkU,Uw “ LkU,By. For all x0 P CkpP,B;Fq, the relative
heat flow xt “ expp´tLkU,Uqpx0 ` wq ´ w converges to the closest point x8 P CkpP,B;Fq such that
LkU,Ux8 ` LkU,By “ 0.

For an ill-posed harmonic extension problem, the relative heat flow diverges. For any y P

CkpB;Fq, we may define a relative heat flow that acts as a mild solution to 9x “ ´LkU,Ux ´ LkU,By
using variation of constants. In particular, set Tptq “ expp´tLkU,Uq and LkU,By “ bker ` bkerK where
bker P kerpLkU,Uq and bkerK P kerpLkU,UqK, and define the relative heat flow1

xt :“ Tptqx0 `

ż t

0

Tpt´ sqLkU,Byds

“ Tptqx0 `

ż t

0

Tpt´ sqbker ds`

ż t

0

Tpt´ sqbkerK ds.

We now analyze these three pieces separately. As t Ñ 8, Tptqx0 converges to Px0, where P
is the orthogonal projection onto the kernel of LkU,U. Since Tptqbker “ bker for all t ě 0, we
may write

şt
0 Tpt´ sqbker ds “ tbker. Finally, it can be seen through the spectral theorem that

şt
0 Tpt´ sqbkerK ds either converges to a point (if bkerK P RpLkU,Uq, putting us in the previous case)

or grows sub-linearly. In either case, the linear growth of the tbker dominates, and the relative
heat flow diverges to infinity.

The relative harmonic flow can be used to detect when a harmonic extension problem has a
solution. Simply check if the relative heat flow converges; if it does, the limiting value is a solution
to the harmonic extension problem. If the relative heat flow diverges, there is no solution.

1 When there is a w P CkpP,B;Fq such that LkU,Uw “ LkU,By, this expression for the relative heat flow reduces to
equation (1).
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6.2 restriction map diffusion

We now turn our attention away from heat dynamics on spaces of cochains of a Hilbert sheaf, and
consider evolving restriction maps according to a heat flow. We work over a network G “ pV,Eq

with a given choice of vertex and edge stalks. Instead of driving a cochain x0 P C0 toward a
global section, we designate a fixed cochain x and drive the restriction maps themselves toward
a sheaf for which x0 is a global section.

Definition 6.2.1. Let G “ pV,Eq be a finite multigraph (allowing self-loops). A network Hilbert
sheaf on G is a Hilbert sheaf F : G Ñ Hilb0,k, where G is viewed as a weakly regular cell structure.

For the entirety of this section, fix a finite multigraph G, and a function F : ObpGq Ñ ObpHilbkq.
We think of F as a choice of a stalk for each vertex and edge of G, without a corresponding
assignment of restriction maps. The function F may be extended (non-uniquely) to a network
Hilbert sheaf F by specifying restriction maps. We let BHilbShvkpG; Fq denote the set of all such
bounded extensions. Since there are no commutativity constraints for restriction maps that must
be satisfied on a network Hilbert sheaf, there is a one-to-one correspondence between sheaves in
BHilbShvkpG; Fq and a choice of a bounded linear operator for each morphism of G.

Given a pair of Hilbert spaces X and Y, let BpX, Yq :“ HilbkpX, Yq denote the space of bounded
linear operators X Ñ Y. The operator norm } ´ }op gives BpX, Yq the structure of a Banach space.
Consequently, we may identify BHilbShvkpG; Fq with the Banach space

BHilbShvkpG; Fq ”
à

f:vÑe

B
`

Fpvq, Fpeq
˘

Ď B
`

C0pG; Fq,C1pG; Fq
˘

where the direct sum is taken over all non-identity morphisms in G.
Fix a bounded network Hilbert sheaf F P BHilbShvkpG; Fq and a zero-cochain x P C0pG; Fq. Let

e be an edge of G, with incoming maps F : v Ñ e and g : u Ñ e. Consider the evolution

d

dt
Ff “ ´pFfpxvq ´ Fgpxuqqx˚

v , (2)

where x˚
v :“ x´, xvy is the bounded linear functional on Fpvq induced by xv. Applying these

dynamics to each restriction map Ff yields a coupled system, and a corresponding first order
autonomous linear dynamical system

9F “ ΨpFq (3)

on the Banach space BHilbShvkpG; Fq. We call this system restriction map diffusion.
To analyze the long-term dynamics of restriction map diffusion, we use the following lemma.
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Lemma 6.2.2. Let X, Y be Hilbert spaces, x ‰ 0 a point in X, and A : BpX, Yq Ñ BpX, Yq the bounded
linear map Aϕ :“ ϕpxqx˚. The initial value problem

9ϕ “ ´Aϕ

ϕp0q “ ϕ0

has a unique solution ϕt in BpX, Yq that converges to a well defined limit ϕ8 “ limtÑ8ϕt which is the
closest point to ϕ0 in kerpAq.

Proof. The map A has a non-trivial kernel consisting of exactly those ϕ P BpX, Yq that vanish
on x0. For any ϕ, we may compute A2ϕ “ }x}2Aϕ, witnessing that the range RpAq of A is an
eigenspace of A with eigenvalue }x}2. Writing

ϕ “

ˆ

ϕ´
1

}x}2
Aϕ

˙

`
1

}x}2
Aϕ

witnesses a direct sum decomposition BpX, Yq “ kerpAq ‘RpAq. The spectrum of A is now given
by σpAq “ t0, }x}2u, which is real, non-negative, and has an isolate eigenvalue at 0. Chapter 2

section 2 of [34] now ensures the dynamical system

9ϕ “ ´Aϕ

ϕp0q “ ϕ0

has a unique solution ϕt for each initial value ϕ0, that converges to ϕ8 “ ϕ0 ´ 1
}x}2

Aϕ0.
Consider the projection map P : X Ñ kerpAq by Ppϕq “ ϕ´ 1

}x}2
Aϕ. This map has operator

norm }P}op “ 1, so Ppϕq is the nearest point to ϕ in kerpAq [114].

To use this lemma to analyze restriction map diffusion, notice that the pairs of restriction maps
into each edge of G evolve independently from one another. Consequently, each edge-component
δe of the coboundary map δ evolves independently. Let e be an edge of G, with incoming covering
maps f : v Ñ e and g : u Ñ e, where it is possible that u “ v. The coboundary component δe,
viewed as a linear map δe : Fpvq ‘ Fpuq Ñ Fpeq evolves in B

`

Fpvq ‘ Fpuq , Fpeq
˘

according to

9δe “ ´δe

¨

˝

xv

xu

˛

‚

¨

˝

xv

xu

˛

‚

˚

. (4)

Notice that these dynamics on δe are equivalent to the dynamics on the restriction maps into e,
as

9δe “

”

´ 9Ff 9Fg

ı

“ pFgxu ´ Fuxvq

”

x˚
v x˚

u

ı

,
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after possibly expanding the domain of δe to Fpuq ‘ Fpuq when u “ v. Applying Lemma 6.2.2
initialized at 0δe to this system yields a solution tδe, which converges to the nearest operator
8δe such that pxv, xuqT is in the kernel of δe. Taking a block-operator representation for tδe gives
evolutions tFf and tFg.

Applying these dynamics to each edge simultaneously yields dynamics tFf for every restric-
tion map f in G; combining these paths in the Banach space BHilbShvkpG; Fq gives an evolution of
sheaves tF starting from the initial bounded Hilbert sheaf 0F. The limiting sheaf 8F “ limtÑ8

tF

is the closest sheaf to 0F for which x is a global section. We have proved the following theorem.

Theorem 6.2.3. Let G “ pV,Eq be a network and F : ObpGq Ñ ObpHilbkq be a choice of a Hilbert
space for each vertex and edge. Let 0F be an initial choice of a bounded Hilbert sheaf extending F, and
x P C0pG; Fq a fixed choice of a zero-cochain. Restriction map diffusion on BHilbShvpG; Fq has a solution
tF, which converges as t Ñ 8 to the nearest network sheaf of Hilbert spaces for which x is a global section.

6.2.1 Hilbert-Schmidt restriction map diffusion

Under additional hypotheses on the admissible restriction maps, we may view these dynamics
as taking place in a Hilbert space and converging to an orthogonal projection in sheaf-space. Say
that a Hilbert sheaf F : P Ñ Hilbk is a Hilbert-Schmidt sheaf if each restriction map is Hilbert-
Schmidt. For such a Hilbert sheaf, all coboundary operators δ‚ and sheaf Laplacians Lk are also
Hilbert-Schmidt operators.

The operator A : HSpX, Yq Ñ HSpX, Yq that acts by Apϕq “ ϕpx0qx˚
0 for some fixed x0 ‰ 0 is a

rank-one operator, and consequently is Hilbert-Schmidt. It follows that restriction map diffusion
in BpX, Yq, when started from a Hilbert Schmidt operator stays inside of HSpX, Yq Ď BpX, Yq

(with the derivative taken with respect to the operator norm). Moreover, the bound } ´ }op ď

} ´ }HS, ensure that the derivative in HSpX, Yq with respect to } ´ }op agrees with the derivative
with respect to } ´ }HS, whenever the } ´ }HS-derivative exists. Applying this to restriction map
diffusion yields the following corollary to Theorem 6.2.3.

Theorem 6.2.4. Let G “ pV,Eq be a network and F : ObpGq Ñ ObpHilbkq be a choice of a Hilbert space for
each vertex and edge. Let 0F be an initial choice of a Hilbert-Schmidt sheaf extending F, and x P C0pG; Fq
a fixed choice of a zero-cochain. Restriction map diffusion on the Hilbert space of Hilbert-Schmidt sheaves
has a solution tF, which converges as t Ñ 8 to the nearest Hilbert-Schmidt sheaf for which x is a global
section.

The projection onto the nearest sheaf for which x is a global section is now properly an orthog-
onal projection with respect to the Hilbert space structure of Hilbert-Schmidt operators.
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Remark 6.2.5. The Hilbert-Schmidt setting reveals that restriction map diffusion is itself a heat
flow. Let X, Y,Z be Hilbert spaces, and take non-zero fixed points x P X and y P Y. Let ΦX :

HSpX,Zq Ñ Z denote the evaluation map ΦXA “ Ax, which has adjoint Φ˚z “ ´zx˚. Define ΦY
similarly. The heat dynamics for the Hilbert sheaf

HSpX,Zq Z HSpY,Zq

‚ ‚

ΦX ΦY

evolves A P HSpX,Zq and B P HSpY,Zq by

¨

˝

9A

9B

˛

‚“ ´

¨

˝

pAx´Byqx˚

pBy´Axqy˚

˛

‚ .

These are essentially the dynamics of restriction map diffusion. Indeed, given a Hilbert-Schmidt
network sheaf F : G Ñ Hilbk, and a zero-cochain x P C0pG;Fq, we may build a new network
sheaf on MappF, xq : G Ñ Hilbk with the following data.

• Stalks. For each vertex v, let Ev denote the collection of edges bounded by v. The vertex
stalk MappF, xqpvq is the direct sum

MappF, xqpvq “
à

ePEv

HS
`

Fpvq,Fpeq
˘

.

The edge stalks MappF, xqpeq “ Fpeq are unchanged from F.

• Restriction maps. For each map f : v Ñ e, the restriction map MappF, xqf is given by

MappF, xqfpAq “ Aepxvq

where Ae is the e-component of A P
À

ePEv
HS

`

Fpvq,Fpeq
˘

and xv is the v-component of x.

By the previous analysis, heat flows on the Hilbert sheaf MappF, xq exactly encodes restriction
map diffusion.
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6.2.2 Joint dynamics

On a Hilbert-Schmidt network sheaf F : G Ñ Hilb0,k with a choice of a cochain x0 P C0pG;Fq, one
may diffuse both the cochain xt and the sheaf tF simultaneously. These joint dynamics evolve
according to

9x “ ´αδ˚δx
9δe “ ´βδexex˚

e ,

where xe is the pair of components of x in the stalks over the vertices bounding e. Additionally,
α,β ě 0 are real parameters that control the comparative speeds of the cochain diffusion and the
restriction map diffusion.

The first step toward understanding joint dynamics is to recognize this system as gradient
descent. Let HSpC0,C1q denote the Hilbert space of Hilbert-Schmidt operators between zero-
cochains and one-cochains, and HSCbdry Ď HSpC0,C1q the space of coboundary operators,
having the correct sparsity pattern as block operators. We work in the space

Z :“ C0pG; Fq ‘ HSCbdry

as the dynamics on each component δe induces dynamics for the whole coboundary matrix by
9δ “ ´Ppδxqx˚. To recover the α and β coefficients, we renormalize our stalks by premultiplying
by the diagonal block operator M : Z Ñ Z that scales the cochain component of Z by α ě 0 and
the coboundary map component of Z by β. This renormalization induces a new inner product
xz1, z2yM :“ xz1,Mz2yZ on Z. The induced norm of x´, ´yM is equivalent to the norm induced
by x´, ´yZ as a direct sum. Consider the potential function

V

¨

˝

x

δ

˛

‚“
1

2
}δx}

2 .

The gradient of the potential function V : Z Ñ R with respect to x´, ´yM is given by

∇MV

¨

˝

x

δ

˛

‚“

¨

˝

αδ˚δx

βPpδxqx˚

˛

‚ ,
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and consequently we recover our dynamics in Z as the gradient descent

¨

˝

9xt
9δt

˛

‚“ ´∇V

¨

˝

xt

δt

˛

‚.

Proposition 6.2.6. The initial value problem

9z “ ´∇Vz

zp0q “ z0

has unique global solutions for all z0.

Proof. ∇MV is locally Lipschitz, so the Picard-Lindelöf theorem [15] promises unique local solu-
tions. We check that

d

dt
}zt}2M “ xzt, 9ztyM

“ ´α}δtxt}2M ´ 2β
ÿ

ePE

}δexe}2M}xe}2M

ď 0.

Therefore trajectories are bounded, and the unique local solutions can be globally extended.

Convergence of joint dynamics to a pair px8, δ8qT with δ8x8 “ 0 is difficult to guarantee. One
would like to use Lyapunov theory, but the infinite dimensional setting has caveats. Consider the
following version of LaSalle’s invariance principle, due to Hale [51, Theorem 1]

Lemma 6.2.7. Suppose u is a dynamical system on a Banach space X. If V is a Lyapunov function on
A Ď X and an orbit xt of u belongs to A and is precompact, then xt converges to a point in the largest
invariant set in S “ ty P A : 9Vpyq “ 0u.

The requirement of precompact trajectories is quite restrictive; without precompactness, a tra-
jectory xt can spiral through infinite dimensions, dissipating the potential energy Vpxtq to zero,
yet not converging. There are a dearth of tools to find precompact trajectories for joint dynam-
ics. In particular, the linearization of the second derivative of the potential function V does not
have a finite dimensional kernel, preventing the use of a Łojasiewicz–Simon inequality [23, 56,
113]. Nonetheless we can prove some conditions under which the dynamics converge. For ease
of notation, we work in the case that α “ β “ 1, as though we have already renormalized via the
operator M.
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To begin, we define a collection of quantities associated to the evolution of pxt, δtqT . We set:

pt :“ }xt}

qt :“ }δt}

rt :“ p2t ´ q2t

st :“ }δtxt}

Vt :“ Vppxt, δtqT q.

Lemma 6.2.8. The quantities pt,qt, rt, st,Vt satisfy the following.

(i) d
dtp

2
t “ ´4Vt ď 0.

(ii) d
dtq

2
t “ ´4Vt ď 0.

(iii) d
dtrt “ 0.

(iv) d
dts

2
t “ ´2p}δ˚

tδtxt}
2 ` }Ppδtxtx˚

tq}2q.

(v) d
dtVt “ ´

`

}δ˚
tδtxt}

2 ` }Pδtxtx˚
t}2

˘

.

Proposition 6.2.9. If pinftą0 ptq ą 0, then pxt, δtq converges to an equilibrium point of V . In particular,
this condition is satisfied when r ą 0.

Proof. The arc-length of the trajectory pxt, δtqT in Z is given by the integral

ż 8

0

›

›

›

›

›

›

¨

˝

9xt
9δt

˛

‚

›

›

›

›

›

›

dt “

ż 8

0

b

p´ 9Vtqdt.

Hence the trajectory has finite arclength if and only if
b

p´ 9Vtq is integrable over the interval
r0, 8q. A sufficient criterion for this integrability is to find a bound of the form 9Vt ď ´kVt for a
positive constant k; this implies an upper bound:

´ 9Vt “ }δ˚
tδtxt}

2 ` }Pδtxtx˚
t}2

ď 2pq2t ` p2tqVt

ď 2pq20 ` p20qV0e
´kt ,

from which we conclude
a

´ 9Vt is integrable. To find such a bound, we work with the following
upper bound on 9Vt:

9Vt “ ´
`

}δ˚
tδtxt}

2 ` }Pδtxtx˚
t}2

˘
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ď ´2p2tVt

ď 2pinf
t
ptqVt .

By hypothesis, inft pt ą 0, giving the required bound. Every path of finite length is precompact,
so LaSalle’s invariance principle (Lemma 6.2.7), the trajectory pxt, δtq converges to an equilibrium
point px8, δ8qT such that δ8x8 “ 0.

Remark 6.2.10. This proposition effectively says that so long as xt does not converge to 0, then the
joint dynamics pxt, δtqT must converge to some equilibrium point. Therefore if we can bound pt
below, joint dynamics converge nicely. For example, when r “ p2t ´q2t ą 0, we know pt ą

?
r ą 0

for all t. Moreover, while the coboundary component δt (and hence the sheaf tF) need not
converge, joint dynamics always converges in the zero-cochain component.

For another criterion, we may adapt proposition 7.2.3 of [52] by the exact same argument.

Corollary 6.2.11. Let Kt :“ δ˚
tδt ´ xtx˚

t be an operator from C0pG; Fq Ñ C0pG; Fq. If there is a vertex v
such that K0 is not positive semidefinite on the stalk Fpvq, then joint dynamics converge.

For yet another criterion, we may compare }x0} to the norm of its initial image }δ0x0}.

Corollary 6.2.12. If }x0} ą }δ0x0}, then joint dynamics converge.

Proof. Consider the quantity Φptq “
s2t
p2t

“
}δtxt}2

}xt}2
. We may compute the derivative:

d

dt
Φptq “

p2tps2tq 1 ´ s2tpp2tq 1

p4t

ď
2p}δtxt}4 ´ }xt}2}δ˚

tδtxt}
2q

}xt}4
.

By the Cauchy-Schwartz inequality, we may bound }δtxt}4 ď }xt}2}δ˚
tδtxt}

2, from which we
conclude d

dtΦptq ď 0. Therefore if }x0}2 ě }δ0x0}2, then }xt}2 ě }δtxt}2 for all t. If }xt} Ñ 0,
then }δtxt} Ñ 0 as well, and pxt, δtqT Ñ p0, 0qT , proving that joint dynamics always converge for
such a starting point.

6.3 wave propagation

While heat flows dissipate energy and converge to equilibrium states, wave dynamics preserve
energy and exhibit oscillatory behavior. This section develops the theory of wave propagation on
Hilbert sheaves, extending the classical wave equation to the sheaf-theoretic setting. On a suitable
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energy space Ek, the wave operator Wk generates a unitary semigroup whose orbits solve the
second-order wave equation :x “ ´L̃kx. While individual trajectories oscillate indefinitely, their
time averages exhibit convergence properties that enable distributed computation of harmonic
cochains, in line with the finite-dimensional case on a weighted cellular sheaf [115].

Definition 6.3.1. Let F : P Ñ Hilb0,k be a Hilbert sheaf. Let Lk : CkpP;Fq Ñ CkpP;Fq be the
kth-sheaf Laplacian as usual, and let L̃k : kerpLkqK Ñ kerpLkqK denote its restriction to the
stable subspace kerpLkqK. Let pL̃kq1{2 denote the unique positive square root of L̃k. Define the
kth-energy space of F to be the Hilbert space Ek :“ Dom

`

pL̃kq1{2
˘

‘ kerpLkqK with the inner
product:

C

¨

˝

x1

y1

˛

‚,

¨

˝

x2

y2

˛

‚

G

E

:“
A

pL̃kq1{2x1, pL̃kq1{2x2

E

` xy1,y2y.

Remark 6.3.2. When passing from CkpP;Fq to the energy space Ek, we ignore the components
of cochains in the kernel of pLkq1{2. Essentially, cochains in pLkq1{2 carry no energy, and are
implicitly fixed by wave dynamics.

Definition 6.3.3. Let F : P Ñ Hilb0,k be a Hilbert sheaf. The kth-wave operator Wk : Ek Ñ Ek is
the block operator

Wk “

»

–

0 I

´L̃k 0

fi

fl ,

with domain DompWkq “ pDompL̃kq ‘ DomppL̃kq1{2q Ď Ek.

The operator Wk is a closed, densely defined, and can be seen to be skew-adjoint; Wk satisfies
pWkq˚ “ ´Wk. To confirm this, we first check that Wk is skew-symmetric. For px1,y1qT and
px2,y2qT in the domain DompWkq, we compute:

C

Wk

¨

˝

x1

y1

˛

‚,

¨

˝

x2

y2

˛

‚

G

E

“

C

¨

˝

y1

´L̃x1

˛

‚,

¨

˝

x2

y2

˛

‚

G

E

“

A

pL̃kq1{2y1, pL̃kq1{2x2

E

Ck
´
@

L̃kx1,y2
D

Ck

“ ´

A

pL̃kq1{2x1, pL̃kq1{2y2

E

Ck
`
@

y1, L̃kx2
D

Ck

“

C

¨

˝

x1

y1

˛

‚, ´Wk

¨

˝

x2

y2

˛

‚

G

E

.

This confirms that Wk is skew-symmetric. It is straightforward to check that DompWkq is the
maximal domain on which the adjoint can be defined, confirming that Wk is skew-adjoint. By
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Stone’s theorem [100], Wk is the infinitesimal generator of a strongly continuous one-parameter
unitary group Uptq :“ etW

k
on Ek.

Definition 6.3.4. Let F : P Ñ Hilb0,k be a Hilbert sheaf with sheaf Laplacian Lk. The kth-wave
group of F is the strongly continuous one parameter unitary group expptWkq on the energy space
Ek, where Wk is kth-wave operator. Given an initial point px0, y0qT P Ek, the wave propagation
of px0, y0qT is the path

¨

˝

xt

yt

˛

‚“ expptWkq

¨

˝

x0

y0

˛

‚

in Ek.

Remark 6.3.5. Let pxt, ytqT be the wave propagation of an initial value pxt, ytqT . Using the prop-
erties of semigroups, we have that p 9xt, 9ytqT “ Wpxt, ytqT “ pyt, ´LxtqT . It follows that the first
component xt is a solution to the wave equation

:x “ ´L̃x (5)

subject to initial conditions xp0q “ x0 and 9xp0q “ y0. Accordingly, we will often denote the wave
propagation pxt, 9xtq.

Remark 6.3.6. Since the wave group etW : Ek Ñ Ek is a globally defined unitary operator
for each t, the energy norm }pxt, 9xtq}E is constant. This may also be confirmed through direct
computation. Even though }pxt, 9xtq}E is constant, it is possible that }xt} diverges to infinity in
CkpP;Fq.

6.3.1 Solutions of the wave equation

Proposition 6.3.7. Let F : P Ñ Hilb0,k be a Hilbert sheaf, and let Wk be the kth-wave operator. The
spectrum of Wk is purely imaginary and given by

σpWkq “
␣

˘ λi : λ P σpL̃kq
(

.

Proof. This is a general fact about block operators of the form of Wk. We handle the case where
F is a complex Hilbert sheaf—the real case follows via complexification. A value λ P C is in the
spectrum of Wk if and only if the operator pλI´Wq fails to be boundedly invertible onto its
image. Solving the equation pλI´Wqpx,yqT “ pw, zqT yields the system:

pL̃k ` λ2Iqx “ z` λw
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y “ λx´w.

Hence pλI´Wq has a bounded inverse if and only if pL̃k ` λ2Iq has a bounded inverse. This is
equivalent to the statement that ´λ2 P σpL̃kq, from which we derive that

σpWkq “
␣

˘ λi : λ P σpL̃kq
(

.

Since L̃k is a self-adjoint operator (and hence has a real spectrum), the spectrum of W is purely
imaginary.

More can be said by restricting our attention to eigenvalues. For simplicity, assume we’re
working with a complex Hilbert sheaf—the following results can be adapted for real Hilbert
sheaves through complexification. When pλ, uq is an eigenvalue-eigenvector pair for L̃k, we get a
corresponding duo of eigenvectors for Wk, z` “ pu, iωuqT and z´ “ pu, ´iωuqT where ω “

?
λ,

with corresponding eigenvalues iω and ´iω respectively. We call the eigenvectors z` and z´

normal modes of W. Normal modes represent purely-oscillatory solutions to the wave equation.
When L̃k (and henceWk) have pure point spectrum, every wave propagation can be expressed

as an infinite sum of normal modes. In particular, we may write px0, 9x0qT “
ř

λPσpL̃kq a
`
λ z`
λ `

a´
λ z´
λ , where a˘

λ P C is a scalar. We may now express the wave propagation pxt, 9xtqT as

pxt, 9xtqT “
ÿ

λPσpL̃q

a`
λ e
i
?
λtz`

λ ` a´
λ e

´i
?
λtz´

λ .

However, the sheaf Laplacian will generically fail to have pure point spectrum. We may nonethe-
less arrive at a similar representation through spectral calculus. We start with the following
theorem.

Theorem 6.3.8. The wave propagation of px0, 9x0qT can be represented as

¨

˝

xt

9xt

˛

‚“

¨

˝

cos
`

tpL̃kq1{2
˘

x0 `
`

L̃k
˘´1{2 sin

`

tpL̃kq1{2
˘

9x0

´
`

L̃k
˘1{2 sin

`

tpL̃kq1{2
˘

x0 ` cos
`

tpL̃kq1{2
˘

9x0

˛

‚ .

Proof. Let Uptq :“ expptWkq denote the wave group. We may write Uptq “ Cptq ` Sptq, where
Cptq “ 1

2

`

Uptq `Up´tq
˘

and Sptq “ 1
2

`

Uptq ´Up´tq
˘

. Analyzing the strongly continuous group
Cptq, we may derive the following identities:

Cp0q “ I

9Cp0q “ 0
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:Cptq “ ´

»

–

L̃ 0

0 L̃

fi

flCptq .

Cptq is a solution to the initial value problem :T `

»

–

L̃ 0

0 L̃

fi

fl T “ 0, subject to the initial conditions

Tp0q “ I and 9Tp0q “ 0 in the Banach space Ek. The unique mild solution to this differential
equation is given by

Cptq “

»

–

cos
`

pL̃kq1{2t
˘

0

0 cos
`

pL̃kq1{2t
˘

fi

fl ,

where cos
`

pL̃kq1{2t
˘

is the bounded operator defined by the Borel function calculus. A similar
analysis of Sptq yields2

Sptq “

»

–

0
`

L̃k
˘´1{2 sin

`

tpL̃kq1{2
˘

`

L̃k
˘1{2 sin

`

tpL̃kq1{2
˘

0

fi

fl .

The solution follows by addition.

Remark 6.3.9. This solution is analogous to the d’Alembert solution to the wave equation in one
dimension.

6.3.2 Long term behavior of wave propagation

Theorem 6.3.10. Let pxt, 9xtqT be a wave propagation with initial point px0, 9x0qT . The time-average
position of xt is zero. That is,

lim
TÑ8

1

T

ż T

0

xt dt “ 0 .

Proof. Using Theorem 6.3.8, write the cochain

xt “ cos
`

tpL̃kq1{2
˘

x0 `
`

L̃k
˘´1{2 sin

`

tpL̃kq1{2
˘

9x0 .

We analyze these two terms in the sum separately.
The cosine term. Let Φptq :“

`

L̃k
˘´1{2 sin

`

tpL̃kq1{2
˘

. The function fpt, xq “ sinptxq{x, appro-
priately extended to a total function on R2, is a bounded Borel function for each t and Bf

Bt is a

2 The operator
`

L̃k
˘´1{2 sin

`

tpL̃kq1{2
˘

is the operator obtained by applying the bounded Borel function fpxq “
sinptxq

x

to the operator pL̃kq1{2; the notation is not intended to imply that pL̃kq1{2 is invertible.
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bounded Borel function for all t. The Borel function calculus therefore allows us to differentiate
Φptq “ fpt, pL̃kq1{2q and obtain

d

dt
Φptq “

Bf

Bt
pt, pL̃kq1{2q

“ cosptpL̃kq1{2q .

The integral of the cosine term can now be evaluated as

1

T

ż T

0

cos
`

tpL̃kq1{2
˘

x0 dt “

`

L̃k
˘´1{2 sin

`

TpL̃kq1{2
˘

x0
T

.

Since x0 P kerpL̃kqK, the spectral measure form of the spectral theorem guarantees

›

›

›

›

›

`

L̃k
˘´1{2 sin

`

TpL̃kq1{2
˘

x0
T

›

›

›

›

›

2

“

ż

λPσppL̃kq1{2q

ˆ

sinpTλq

Tλ

˙2

dµx0pλq .

Let m ą 0 be a small real number. On the interval p0,mq, the integral may be bounded above by
µx0pp0,mqq as the integrand is bounded above by 1. On the interval pm, 8q, the integral may be
bounded above by }x0}

T2m2 as the integrand is bounded above by 1
T2λ2

. Combining these bounds
yields

›

›

›

›

›

`

L̃k
˘´1{2 sin

`

TpL̃kq1{2
˘

x0
T

›

›

›

›

›

2

X

ď µx0pp0,mqq `
}x0}2

T2m2
.

The upper bound converges to µx0pp0,mqq as T Ñ 8. Since m may be chosen arbitrarily small,
this quantity goes to zero. It follows that the cosine term satisfies

lim
TÑ8

1

T

ż T

0

cos
`

TpL̃kq1{2
˘

x0 dt “ 0.

The sine term. A similar analysis to the cosine term gives the following identity:

ż T

0

pL̃kq´1{2 sinptpL̃kq1{2q
1

T
9x0 dt “

pL̃kq´1pI´ cospTpL̃kq1{2qq 9x0
T

.

Again using the spectral theorem, since 9x0 is orthogonal to the kernel of L̃k, this term goes to
zero as T Ñ 8.

Conclusion. Combining these results, when 9x0 K kerpL̃kq, the time-average position x̃ “

limTÑ8
1
T

şT
0 xt dt converges to zero.
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This argument may be adapted to give a procedure for finding harmonic cochains in CkpP;Fq.
Consider the space Hk :“ Dom

`

pLkq1{2
˘

‘ kerpLkqK, which strictly contains the energy space
Ek. The energy inner product x´, ´yE defines a semi-inner product on Hk; there are non-zero
points x P Hk such that xx, xy “ 0. Moreover, one may extend Wk to Hk by

Wk “

»

–

0 I

´Lk 0

fi

fl .

This operator is still well-defined as RpLkq Ď kerpLkqK. For any px0, 9x0qT P Hk, writing x0 “

y0 ` k0 where y0 P kerppLkq1{2qK and k0 P kerppLkq1{2q, one may compute that

Wk

¨

˝

x0

9x0

˛

‚“ Wk

¨

˝

y0

9x0

˛

‚.

This allows us to extend the wave propagation dynamics from Ek to Hk, yielding

¨

˝

xt

9xt

˛

‚“

¨

˝

k0

0

˛

‚` etW
k

¨

˝

y0

9x0

˛

‚.

Corollary 6.3.11. Let pxt, 9xtqT be a wave propagation on Hk with initial point px0, 0qT . The time-average
position

x̃ “ lim
TÑ8

1

T

ż T

0

xt dt

is the nearest k-harmonic cochain to x0.

Proof. Write x0 “ y0 ` k0 where y0 P kerppLkq1{2qK and k0 P kerppLkq1{2q. Since pLkq1{2 and Lk

have the same kernel, k0 is the nearest harmonic cochain in CkpP;Fq. The wave dynamics on Hk

decompose as
1

T

ż T

0

xt dt “ k0 `
1

T

ż T

0

yt dt

Taking limits and applying Theorem 6.3.10 yields the desired result.

Remark 6.3.12. This corollary essentially allows the use of wave propagation for distributed com-
putation of a harmonic cochain. If each k-cell represents an agent, the dynamics can be computed
locally at each k-cell utilizing only the information from neighboring k-cells. By continuously
evolving local data via wave propagation and recording the signal, taking an average stalk-wise
yields a harmonic cochain.
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7

N O N L I N E A R D Y N A M I C S

In Chapter 6, we observed that the sheaf Laplacian Lk of a Hilbert sheaf F : P Ñ Hilb0,k

defines a heat equation 9x “ ´Lkx on the space of k-cochains CkpP;Fq. Crucially, this is a first
order linear differential equation which can be solved via semigroup theory. In this chapter, we
explore two distinct nonlinear analogues to this heat flow. We restrict our attention to the case of
network Hilbert sheaves for simplicity, though many results can be adapted for the k-Laplacian
Lk : CkpP;Fq Ñ CkpP;Fq of an arbitrary Hilbert sheaf. Both approaches to nonlinear heat flow
come from the following observation.

Proposition 7.0.1. Let F : G Ñ Hilbk be a bounded network Hilbert sheaf with Laplacian L “ δ˚δ.
Every heat flow xt on the space of zero-cochains C0pG;Fq is a gradient descent trajectory of the quadratic
potential function

Vpxq :“
1

2
}δx}2.

In particular, ∇V “ L. This suggests an identification of linear heat dynamics on a Hilbert
sheaf with gradient descent with respect to a quadratic distance function gp´q “ } ´ }2. We may
adapt this framework in two different ways.

1. First, we may consider replacing the quadratic gp´q “ } ´ }2 with a different function for
measuring "distance" in C1pG;Fq. Changing the distance function g will result in different,
nonlinear sheaf Laplacian Lg : C0pG;Fq Ñ C0pG;Fq, with different dynamics. This ap-
proach, which we call a one-cochain nonlinearity, was first explored for weighted cellular
sheaves in [55, Section 10], and expanded in [52].

2. Second, we may take a truly "dynamics first" approach by replacing the coboundary opera-
tor δ with a nonlinear map. Such a nonlinear coboundary map may be obtained by allowing
restriction maps to themselves be nonlinear. We call this approach a zero-cochain nonlin-
earity, as the coboundary map itself is nonlinear on C0pG;Fq.

The first approach, explored in Section 7.1, generalizes the quadratic potential to incorporate
edge-wise nonlinearities. While this framework has been studied in the finite-dimensional setting,
we briefly review the construction and note the additional care required when extending to
infinite-dimensional Hilbert sheaves, particularly regarding compactness assumptions for LaSalle
invariance arguments.
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The remainder of the chapter focuses on the second approach, which forms the primary con-
tribution of this chapter. Section 7.2 develops the general theory of C0-nonlinear Hilbert sheaves,
where restriction maps need not be linear. The challenge here lies in defining an appropriate
notion of sheaf Laplacian when the coboundary operator δ loses linearity. We address this by em-
ploying various generalized gradients (Fréchet, Clarke, and convex subdifferential) depending
on the regularity of the potential function VFpxq “ 1

2}δx}2. The section concludes by extending
the framework to Riemannian network sheaves, where stalks are smooth Riemannian manifolds
rather than Hilbert spaces.

Section 7.3 and Section 7.4 examine two special cases of C0-nonlinear Hilbert sheaves that
admit tractable analysis. Section 7.3 studies affine network sheaves, where restriction maps take
the form Ffpxq “ Afx`bf. We demonstrate that heat flows on such sheaves converge to ordinary
least squares solutions of potentially inconsistent inhomogeneous linear systems. Moreover, we
establish a cohomological interpretation through the language of torsors, following the work of
[46]. Specifically, we show that the cohomology of the linear structure sheaf with restrictions maps
Ffpxq “ Af encodes obstructions to the existence of global sections for affine Hilbert sheaves with
restriction maps Ffpxq “ Afx` bf.

Section 7.4 investigates continuous piecewise affine (CPWA) Hilbert sheaves, where restriction
are continuous piecewise affine maps. Maps of this class arise naturally in applications to neural
networks with ReLU activation functions. The analysis requires tools from non-smooth analysis
as the resulting dynamics constitute state-dependent switched affine systems. We establish global
existence of Filippov solutions and prove that fast heat flows—those that minimize time spent in
sliding modes—are bounded and converge to generalized critical points of the potential function.
The polyhedral structure underlying CPWA maps provides sufficient geometric control to ensure
well-behaved long-term dynamics despite the lack of smoothness.

Throughout, we maintain focus on the interplay between the algebraic structure of sheaves and
the analytic properties of their associated dynamical systems, demonstrating how nonlinearity
in restriction maps enriches both the theoretical framework and potential applications of cellular
sheaf theory.

7.1 one-cochain nonlinearities

Let F : G Ñ Hilb0,k be a network sheaf of Hilbert spaces on a finite graph G “ pV,Eq, with
coboundary map δ. We briefly discuss nonlinear dynamics of the form 9x “ 1

2gpδxq for different
choices of g on bounded Hilbert sheaves. This approach to nonlinear sheaf Laplacians in the finite
dimensional setting is well-trod ground [52, 54]. We first recast the usual heat flow on space of
zero-cochains C0pG;Fq as subgradient descent.
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7.1.1 Heat flow as subgradient descent

Definition 7.1.1. Let V : X Ñ R be a partially-defined extended real-valued functional on a
Hilbert space X. V is proper if V has non-empty domain, is not uniformly infinite, and never
takes on the value of ´8.

Let A : X Ñ Y be a closed, densely defined operator with D :“ DompAq. We may define a
potential function

Vpxq :“

$

’

&

’

%

1
2}Ax}2 if x P D

8 else.

The potential function V is not continuous in general, and cannot be differentiated. However, V
is lower-semicontinuous, convex, and proper. These properties allow us to compute the subdif-
ferential of V as

BVpxq :“ tg P X : Vpyq ě Vpxq ` xg,y´ xy @y P Xu .

The subdifferential BVpxq “ tA˚Axu for all x P DompA˚Aq [15]. Moreover, when A is bounded
(and V is Fréchet differentiable), this subdifferential exactly agrees with the usual gradient of V .

Applying this analysis to the (potentially unbounded) coboundary operator δ of the network
Hilbert sheaf F : G Ñ Hilb0,k yields the identification of the heat flow 9x “ ´Lx with (sub)gradient
descent with respect to the functional Vpxq “ 1

2}δx}2.

7.1.2 Edgewise nonlinearities

In the previous analysis of the potential function Vpxq “ 1
2}δx}2, the potential function decom-

poses edgewise as

Vpxq “
1

2

ÿ

ePE

}pδxqe}2 ,

where E is the set of edges of the network G. The analysis via subgradients may easily be repeated
for unbounded network Hilbert sheaves when the distance function } ´ }2 is replaced with a
different convex function g on each edge, such as the p-norm } ´ }p for any choice of p ě 1.
However, to consider non-convex g, it is useful to restrict attention to bounded Hilbert sheaves.

Definition 7.1.2. Let F : G Ñ Hilbk be a bounded network Hilbert sheaf on a graph G “ pV,Eq.
A C1-nonlinearity is a family of globally defined maps tϕe : Fpeq Ñ R

ˇ

ˇ e P Eu. The data of a
C1-nonlinearity induces a block map Φ : C1pG;Fq Ñ R by

Φpyq :“
ÿ

ePE

ϕeye .
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We affectionately call the mapΦ the middle map of the C1-nonlinearity due to its role in defining
the C1-nonlinear Laplacian.

Definition 7.1.3. Let F : G Ñ Hilbk be a bounded network Hilbert sheaf on a graph G “ pV,Eq

with C1-nonlinearity tϕeuePE. The potential function associated to the C1-nonlinearity is the
map VΦ : C0pG;Fq Ñ R defined by

VΦpxq :“
1

2
Φpδxq “

1

2

ÿ

ePE

ϕe
`

pδxqe
˘

.

When Φ is continuously differentiable in a neighborhood of a point δx P C1pG;Fq, the potential
function VΦ is differentiable at x, and has gradient

∇VΦ “
1

2
δ˚p∇Φqδ .

Definition 7.1.4. Let F : G Ñ Hilb0,k be a network Hilbert sheaf on a graph G “ pV,Eq with C1-
nonlinearity tϕeuePE. The C1-nonlinear Laplacian is the map LΦ : C0pG;Fq Ñ C0pG;Fq defined
by

LΦ :“
1

2
δ˚p∇Φqδ.

The C1-nonlinear Laplacian LΦ induces a smooth dynamical system on C0pG;Fq, wherever the
composition Φδpxq is differentiable. The resulting dynamical system

9x “ ´LΦx (6)

is called the C1-nonlinear heat flow with respect to the C1-nonlinearity Φ. The Picard-Lindelöf
theorem ensures the local existence of C1-nonlinear heat flows for all initial values x0 P DompLΦq.

Remark 7.1.5. In [55, Section 7.3], these C1-nonlinear dynamics are explored for finite dimen-
sional weighted cellular sheaves. Many of the results can be straightforwardly adapted for the
infinite dimensional setting. However, care must be taken with arguments based on LaSalle in-
variance, which require additional assumptions or argumentation to ensure precompactness.

7.2 zero-cochain nonlinearities

Our second approach to defining a nonlinear sheaf Laplacian is to directly adapt the definition
of a network Hilbert sheaf to allow for nonlinear restriction maps.

Definition 7.2.1. Let G “ pV,Eq be a finite graph, viewed as a weakly-regular cell structure. A
C0-nonlinear Hilbert sheaf F on G consists of the following data.
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• For each σ P V > E, the choice of a Hilbert space stalk Fpσq.

• For each covering morphism f : v Ñ e in G, a restriction map Ff : Fpvq Ñ Fpeq with domain
Dompfq.

From these data, we define the spaces of zero-cochains C0pG;Fq and one-cochains C1pG;Fq as
before; namely by the direct sum of stalks over vertices and edges respectively. We also define a
coboundary map δ̊ : C0pG;Fq Ñ C1pG;Fq with respect to a choice of an orientation of each edge
by

pδ̊xqe “ Fgxv ´ Ffxu ,

where f and g are the covering maps corresponding to the source and target of the edge e. We
further require that δ̊ be closable, meaning that the closure of the graph Γpδ̊q Ď C0pG;Fq ˆ

C1pG;Fq is the graph of a function, which we denote by δ : C0pG;Fq Ñ C1pG;Fq. In an abuse of
notation, we also call the closure δ the coboundary map.

Remark 7.2.2. Like Hilbert sheaves with unbounded linear operators, the restriction map Ff :

Fpvq Ñ Fpeq is not required to be globally defined nor continuous.

Consider the potential function VFpxq :“ 1
2}δx}2 on C0pG;Fq. When V admits a generalized

gradient BVFpxq for all x P Dompδq, we may define a C0-nonlinear sheaf Laplacian

L :“ BVFpxq

and a corresponding heat flow

9x P ´Lx . (7)

Remark 7.2.3. A general C0-nonlinear Hilbert sheaf will not admit a sheaf Laplacian. Moreover,
different C0-nonlinear Hilbert sheaves will require the use of a different generalized gradient. A
few examples will be illustrative.

Example 7.2.4. Let F be a C0-nonlinear Hilbert sheaf on G such that all restriction maps are con-
tinuously Fréchet differentiable on an open domain of definition. Call such a sheaf continuously
differentiable. The potential function VFpxq is continuously Fréchet differentiable as well, and
we may take the usual gradient ∇ as our generalized gradient. The corresponding sheaf Lapla-
cian is given by Lx :“ ∇12}δx}2, and the corresponding heat flow is gradient descent with respect
to VF.

Example 7.2.5. As a special case of the previous example, a bounded network Hilbert sheaf
F : G Ñ Hilbk can be viewed as a continuously differentiable C0-nonlinear Hilbert sheaf. In this
case, the heat flow reduces to the usual sheaf Laplacian Lx “ ´δ˚δx.
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Example 7.2.6. Suppose F is a C0-nonlinear Hilbert sheaf such that the potential function VFpxq

is proper, convex, and lower semicontinuous. The convex subdifferential

BVFpxq “ tg P C0pG;Fq : VFpyq ě VFpxq ` xg, y ´ xy @y P C0pG;Fq

allows us to define the sheaf Laplacian Lx :“ BVFpxq. The Brézis-Komura theorem will guarantee
a unique heat flow.

Example 7.2.7. As a special case of the previous example, the potential function VF associated to
an unbounded network Hilbert sheaf F : G Ñ Hilb0,k is proper, convex, and lower semicontinu-
ous. Moreover, the convex subdifferential BVF recovers the usual sheaf Laplacian L “ δ˚δ.

Example 7.2.8. Suppose F is a C0-nonlinear Hilbert sheaf such that the potential function VFpxq

is locally Lipschitz on an open domain, but not necessarily convex. In this case, we may use the
Clarke generalized gradient [24, Definition 1.1]:

BVFpxq “ cvx
!

lim
nÑ8

∇VFpx` hnq : hn Ñ 0
)

,

where cvxS denotes the convex hull of points in S. This approach again recovers the usual sheaf
Laplacian when applied to a bounded network Hilbert sheaf.

7.2.1 Local adjoints

In addition to recovering the usual sheaf Laplacian for network Hilbert sheaves, there is a geo-
metric justification for the Laplacian L :“ BVF to be viewed as a nonlinear generalization of the
ordinary sheaf Laplacian. In the forthcoming analysis, we assume that our coboundary operator
δ is locally Lipschitz continuous, and hence almost everywhere differentiable on a dense Gδ set.

Let X and Y be Hilbert spaces. A continuous function f : X Ñ Y has a linear adjoint f˚ : Y Ñ X

such that xfx,yyY “ xx, f˚yyX for all x P X and y P Y if and only if f is a bounded linear function.
Consequently, to define a sheaf Laplacian L “ δ˚δ, the coboundary map δ must be linear. In this
section we seek to define a variant of the adjoint for nonlinear maps that allow a second approach
to nonlinear Laplacian dynamics on Hilbert spaces.

Definition 7.2.9. Let X, Y be Hilbert spaces, and let f : D Ñ Y be a continuous map defined on
an open subset D Ď X. A local linear adjoint (or simply a local adjoint) for f on D is a map
f˚ : Dˆ Y Ñ X such that the following conditions hold.

(i) f˚
x :“ f˚px, ´q : Y Ñ X is a bounded linear map for each x P D.

(ii) For all x P D and y P Y,
ˇ

ˇxfpx` hq ´ fpxq,yyY ´ xh, f˚
xpyqyX

ˇ

ˇ “ op}h}Xq.
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Proposition 7.2.10. A map f : D Ñ Y admits at most one local adjoint.

Proof. We may repeat the argument for the uniqueness of the Fréchet derivative. Fix an x P D

and y P Y. For any h P X, we may compute:

|xh, f˚
xy´ g˚

xyy| ď |xh, f˚
xyy ´ xfpx` hq ´ fpxq,yy| ` |xh,g˚

xyy ´ xfpx` hq ´ fpxq,yy|

“ op}h}q .

Let v :“ f˚
xy ´ g˚

xy, and suppose that v ‰ 0. Then |xϵv,vy|

ϵ “ }v}2 is not op|ϵ|q as ϵ Ñ 0, so
v “ 0.

This proof suggests an interpretation of the local adjoint. For small deviations away from x, we
have a near equality xfpx` hq ´ fpxq,yy « xh, f˚

xpyqy. Moreover, f˚
x is the best approximation, as

it is the only op}h}q approximation.

Example 7.2.11. Suppose A : X Ñ Y is a bounded linear map. Then A has a local adjoint A˚ on
all of Y, which is given by the usual linear adjoint.

Example 7.2.12. Suppose f : X Ñ Y is a continuous affine map, given by fpxq “ Ax` b, where
A : X Ñ Y is a bounded linear operator, and b P Y is a fixed vector. Then f has a local adjoint f˚

all of Y, which is again given by the linear adjoint A˚.

Both of the previous examples may be viewed as special cases of the following proposition.

Proposition 7.2.13. Suppose f : X Ñ Y is Fréchet differentiable on D. Then f has a unique local adjoint
f˚ on all of V given by f˚

x “ pDxfq
˚.

Proof. We simply check by the Cauchy-Schwartz inequality that

|xfpx` hq ´ fpxq,yy ´ xh, pDxfq
˚yy| ď }fpx` hq ´ fpxq ´Dxfphq}}y} “ op}h}q.

This proposition justifies that the C0-nonlinear sheaf Laplacian of a C0-nonlinear Hilbert sheaf
is a natural generalization of a Hilbert sheaf. At each point x P C0pG;Fq where δ is differentiable,
the generalized gradient BVFpxq will agree with the usual gradient

∇VFpxq “ δ˚
xδx .

When δ is locally Lipschitz, and hence differentiable on a dense Gδ-set (and almost everywhere
differentiable with respect to Lebesgue measure when C0pG;Fq is finite dimensional), the dynam-
ics of 9x “ ´Lx look like the linear case locally.
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Remark 7.2.14. The converse to Proposition 7.2.13 is not true. In particular, the limit convergence
required for the existence of a local adjoint is best thought of as occurring in the weak topol-
ogy, while the convergence required for differentiation is in the strong topology. Example 7.2.15

provides a schema for functions which admit a local adjoints but are not differentiable. Conse-
quently, one could define a different notion of a nonlinear Laplacian via Lx :“ δ˚

xδx, whenever δx

admits a local adjoint. However, this definition would be too restrictive, as it could not cover the
unbounded linear case, and convergence results would be given in the weak topology.

Example 7.2.15. Let X “ Y “ ℓ2pNq, and let w : Xzt0u Ñ Y be a continuous function with the
following properties.

1. wpxq is a unit vector for all x P Xzt0u.

2. For all n P N, there is an ϵ “ ϵpnq ą 0 such that wpxq is supported on basis elements
tej : j ą nu whenever }x} ă ϵ.

Now consider the continuous function f : X Ñ Y given by

fpxq “

$

’

&

’

%

}x}wpxq if x ‰ 0

0 else.

At x “ 0, f has a local adjoint given by 0. However, f is not Fréchet differentiable (or even Gateaux
differentiable) at 0.

7.2.2 Generalities on nonlinear heat flow

A generic C0-nonlinear Hilbert sheaf—even when admitting a Laplacian—does not have enough
structure to meaningfully study dynamics, such as proving global existence of solutions to the
heat flow or finding long-time asymptotic behavior. This difficulty is compounded by the ambi-
guity of the nonspecific choice of a generalized gradient. We now discuss the potential function
VF for different choices of generalized gradients.

Notation 7.2.16. Let BC, B˚, and ∇ denote the Clarke gradient, convex subdifferential, and classi-
cal gradient respectively. Meanwhile, let B denote a nonspecific (generalized) gradient. In future
sections, these superscripts will be omitted when the choice of generalized gradient is clear from
context.

Let F be a C0-nonlinear Hilbert sheaf with Laplacian L “ BVF. A point x is a generalized
critical point of VF if 0 P BVFpxq. A generalized critical point x has zero energy (VFpxq “ 0) if
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and only if x is a global section of F (δx “ 0). We say that a generalized critical point x is a
generalized saddle point if x is not a local minimum nor maximum of VF.

For the purpose of "consensus seeking", we will be interested in when a heat flow xt converges
to a global section. It is straightforward to construct examples—even smooth ones—where a C0-
nonlinear heat flow xt does not converge to a global section. Indeed, global sections need not
exist.

7.2.2.1 Smooth gradients

Let F be a C0-nonlinear network sheaf with smooth restriction maps. The associated potential
function VF : C0pG;Fq Ñ R will be a smooth function as well; the natural choice of generalized
gradient is the usual Fréchet gradient ∇. Call such a network sheaf, equipped with the choice of
∇ for the generalized gradient, a smooth C0-nonlinear network sheaf. The Picard-Lindelöf theo-
rem immediately ensures local existence of heat flows xt on C0pG;Fq which satisfy Equation (7).

Proposition 7.2.17. Let F be a smooth C0-nonlinear network sheaf. For every initial value x0, there is a
heat flow xt satisfying Equation (7).

Remark 7.2.18. This local existence will hold more generally if each restriction map is twice
continuously Fréchet differentiable. Under this condition, δ, and hence VF, will both be twice
continuously differentiable, and the gradient ∇VF will itself be locally Lipschitz.

As the solution to a gradient descent, each heat flow xt comes equipped with a Lyapunov
function. In particular, since d

dtVFpxtq “ ´}∇VFpxtq} ď 0, the potential function VF is itself
a Lyapunov function for xt. The asymptotic behavior of heat flow can thus be understood by
LaSalle invariance [51]; in particular, every precompact heat flow xt converges to a generalized
critical point of VF.

Remark 7.2.19. When either C0pG;Fq or C1pG;Fq are finite dimensional, all bounded trajectories
are precompact. This finite-dimensionality condition will hold exactly when all vertex stalks or
all edge stalks of F are finite dimensional.

We now turn to understanding these generalized critical points. The C0-nonlinear Laplacian
L may be computed as Lx “ ∇VFpxq “ pDxδq

˚δx. A cochain x such that δx P ker
`

pDxδq
˚
˘

, but
δx ‰ 0 exactly corresponds to a generalized critical point which is not a global section. The
derivative DxL is, in turn, given by

DxLphq “ pDxδq˚pDxδqphq ` pD2xδph, ¨qq˚δpxq .

At a global section x, DxLphq simplifies to the first component DxLphq “ pDxδq˚pDxδqphq. There-
fore the derivative DxL : C0pG;Fq Ñ C0pG;Fq is a positive operator at each global section, and

145



has a non-negative spectrum. In general, this spectrum will fail to be strictly positive; the global
section will be point in a consensus manifold of points where VF “ 0. If 0 is isolated in the spec-
trum σpDxLq at a global section x, one may apply the center manifold theorem [104, Theorem
7.1] to study local asymptotic stability of flows.

7.2.2.2 Convex subdifferentials

Let F be a C0-nonlinear network sheaf such that the associated potential function VF is lower-
semicontinuous and convex. For such a potential function, the convex subdifferential is a suitable
choice of generalized gradient. For the potential function VF to be convex is an extremely strong
condition, and the corresponding dynamics are straightforward to analyze.

Proposition 7.2.20. If VF is convex, the heat flow 9x P B˚VFpxq has a unique global strong solution for
all initial values x0 P Dompδq, and a unique global mild solution for all x0 P Dompδq. Moreover, xt
converges to a global minimum of VF in the weak topology as t Ñ 8.

Proof. If VFpxq “ 1
2}δpxq}2 is convex, then since δ has closed graph, VF is a proper, convex, lower

semicontinuous functional. The Brézis-Komura theorem [74] guarantees a unique heat flow that
obeys the dynamics 9x P ´Lx “ ´B˚VFpxq for all initial values x0 P Dompδq, as a mild solution.
The solution is classical when x0 P Dompδq. By Opial’s lemma [97, Theorem 6.3], there are no
critical points which are not global minima of VF, and a heat flow xt will weakly converge to
such a global minimum x˚.

Remark 7.2.21. Under additional assumptions such as VF being even [16] or strong convexity
[97], xt will converge strongly to a global minimum. This also constitutes an alternative proof of
the existence and convergence of heat flows for linear Hilbert sheaves.

7.2.2.3 Clarke gradients

When the potential function VF is a globally defined locally Lipschitz continuous, the Clarke
gradient BC is an appropriate choice for a generalized gradient. Indeed, for a locally Lipschitz
potential function V on a generic Banach space X, the Clarke gradient BCVpxq is non-empty
for all x P X [70]. However, care must be taken with the solution concept for the heat flow
9x P ´BCVFpxq, as the right hand side is both multivalued and discontinuous. We will primarily
consider Filippov solutions [39]. For a friendly introduction to non-smooth and discontinuous
differential equations, see the following paper of Cortés [32]. On a Hilbert space X, let FinSubpXq

denote the collection of all finite dimensional linear subspaces of X, and let µU denote Lebesgue
measure on U P FinSubpXq.
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Definition 7.2.22. Let X be a Hilbert space, and let f : X Ñ X be a locally Lipschitz function. The
Filippov set-valued map F[f](x) is defined by

Frfspxq :“
č

ϵą0

č

UPFinSubpXq

č

SĎU
µUpSq“0

cvxtf
`

px` Vq XBϵpxqzpx` Sq
˘

u ,

for each x P X, where Bϵpxq is the open ball of radius ϵ centered at x. When X is finite dimensional,
this definition reduces to

Frfspxq :“
č

ϵą0

č

SĎX
µpSq“0

cvxtf
`

BϵpxqzS
˘

u .

A Filippov solution to the differential inclusion 9x P Frfspxq is an absolutely continuous curve xptq

for t P r0, T s such that 9xptq P Frfspxptqq for almost every t P r0, T s.

Remark 7.2.23. We make a few remarks about Filippov solutions.

1. The complication in the infinite dimensional definition comes from the fact that there is no
canonical nullset structure on an infinite dimensional Hilbert space; we make the standard
choice of using the canonical nullsets of all finite dimensional slices via Lebesgue measure.

2. When f : X Ñ X is the (densely-defined) gradient of a locally Lipschitz potential function
V : X Ñ R, the Filippov function Frfspxq is exactly the Clarke generalized gradient BCVpxq.

3. Finally, the multivalued nature of the Filippov function makes the uniqueness of Filippov
solutions more subtle than existence.

Proposition 7.2.24. Let F be a C0-nonlinear Hilbert sheaf on a network G. If δ is locally Lipschitz and
defined on an open set, the heat flow 9x P ´BCVFpxq has a local Filippov solution around all x0 P Dompδq.

Proof. Since δ is locally Lipschitz, then VFpxq “ 1
2}δpxq}2 is locally Lipschitz as well. It follows

that the negative Clarke gradient ´BCVpxq is upper semicontinuous [24]. Locally existence of a
Filippov solution with initial point x0 P Dompδq up to the boundary of a closed ball of positive
radius inside C0pG;Fq immediately follows [39, Theorem 7.2].

Remark 7.2.25. Under a variety of additional hypotheses, such as bounded sublevel sets of VF,
local existence of Filippov solutions may be strengthened to global existence.

The potential function VF acts as a global Lyapunov function for the heat flow xt, granting
access to a variety of tools for analysis. See [32] for an overview.
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7.2.3 Riemannian consensus

The structure of C0-nonlinear Hilbert sheaves can be generalized beyond Hilb0,k-valued vertex
and edge stalks. When defining the C0-heat flow via smooth gradient descent, we implicitly
identify each vertex stalk with its tangent space at each point. By making this identification
explicit, one may work with Riemannian manifolds for stalks.

Definition 7.2.26. Let G “ pV,Eq be a finite network. A Riemannian network sheaf consists of
the following data.

• For each vertex v P V, a smooth Riemannian manifold Fpvq :“ Mv with metric gv.

• For each edge e P E, a smooth geodesically complete Riemannian manifold Fpeq :“ Me

with metric ge.

• For each covering morphism f : v Ñ e, a smooth map Ff :Mv Ñ Me.

From the data of a Riemannian network sheaf F, one may construct a coboundary operator
as follows. Let C0pG;Fq :“

ś

vPVMv and C1pG;Fq :“
ś

ePEMe denote the product manifolds of
vertex and edge stalks equipped with their product metrics. We abbreviate these spaces to C0

and C1 for notational clarity. One may define the coboundary map δ : C0 Ñ C1 ˆC1 as follows.
Letting pδxqe P Me ˆMe denote the image of δ in the pair of components corresponding to the
edge e in C1 ˆC1, we define δ by

pδxqe :“
`

Fspeqxspeq,Ftpeqxtpeq

˘

,

where speq and tpeq denote the source and target of the oriented edge e, and Fspeq,Ftpeq denote
the corresponding covering morphisms in G.

Remark 7.2.27. Since the edge stalks have no intrinsic notion of subtraction, we record both
components separately.

Let π1 and π2 denote the projections onto the first and second component of C1 ˆ C1. The
coboundary operator defines a potential function

VFpxq :“
1

2
d2C1

`

π1δx,π2δx
˘

“
1

2

ÿ

ePE

d2e
`

Fspeqxspeq,Ftpeqxtpeq

˘

.

Definition 7.2.28. Let F be a Riemannian network sheaf. A zero-cochain x P C0pG;Fq is a global
section of F if the potential function VFpxq “ 0. That is, a global section is exactly a choice of
point xv in each vertex-manifold Mv such that for each edge e, Fspeqxspeq “ Ftpeqxtpeq.
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Remark 7.2.29. A global section encodes a solution to a consensus problem. Borrowing the lan-
guage of opinion dynamics à la [55], one may envision each vertex manifold Mv as a space of
parameters for some agent, which are then expressed through the restriction maps out of Mv.
A global section x P C0pG;Fq exactly corresponds to a choice of parameter for each agent that
satisfy expressed consensus in each edge manifold Me. Such a problem of finding agreement in a
networked collection of points in a manifold is known as the Riemannian consensus problem
[22, 76, 119, 120]. Distributed algorithms for solving the Riemannian consensus problem has been
extensively studied for the constant network sheaf, where there is a fixed manifold M such that
Mσ “ M for all σ P V Y E, and all restriction maps are the identity.

Remark 7.2.30. Not every Riemannian network sheaf will admit a global section; indeed, it is
possible for two for two restriction maps into the same edge to share no points in their image.

Example 7.2.31. We turn to an example from information geometry [5]. For real parameters
µ P R and σ ą 0, let Npµ,σq denote the normal distribution with mean µ and standard de-
viation σ. Let N1 :“ tNpµ,σq : pµ,σq P R ˆ Rą0u denote the collection of all univariate nor-
mal distributions. We endow N1 with the structure of a Riemannian manifold as follows. For a
choice of parameters pµ,σq let ppx;µ,σq denote the corresponding Gaussian density function and
ℓpx;µ,σq :“ logppx;µ,σq its logarithm. The Fisher information metric on N1 may be computed
as

g “

»

–

ErBµℓBµℓs ErBµℓBσℓs

ErBσℓBµℓs ErBσℓBσℓs

fi

fl “

»

–

1
σ2

0

0 2
σ2

fi

fl .

The Fisher information metric endows N1 with the structure of a two-dimensional Riemannian
manifold.

Let G “ pV,Eq be a finite network, and consider the constant Riemannian Hilbert sheaf N1

consisting of the following data.

• A manifold stalk Mσ :“ N1, equipped with the Fisher information metric, for each σ P

V Y E.

• The identity map Ff :“ id : N1 Ñ N1 for each covering map f : v Ñ e.

A global section of this Riemannian network sheaf exactly corresponds to an identical choice of
a normal distribution Npµ,σq P Mv for each vertex.

Recall that when f : M Ñ R is a smooth function on a Riemannian manifold pM,gq, one may
define the gradient of f at x P M as the unique tangent vector ∇xfpxq P TxM such that for all
v P TxM and smooth curves γ : r0, 1s Ñ M with γp0q “ x and 9γp0q “ v, there is an equality:

gxp∇xfpxq, vq “
d

dt
fpγptqq

∣∣
t“0

.
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When the manifold M is geodesically complete, there is a globally defined distance function
d : M ˆM Ñ R for which dpx,yq measures the length of the shortest geodesic connecting
x and y. On the product manifold M ˆM equipped with the product metric g ‘ g one may
define a function cpx,yq :“ 1

2d
2px,yq. For every pair x,y that are connected by a unique length-

minimizing geodesic, the function c has a gradient given by

∇px,yqcpx,yq “ p´ Logx y, ´ Logy xq P TxM‘ TyM

where Logp q is the Riemannian logarithm; for p ‰ q in M, Logp q :“ 9γpqp0qdpp,qq where γpq
is the unique minimal unit-speed geodesic joining p to q. We adopt the convention that when
p “ q, the Riemannian logarithm Logp q “ Logp p “ 0. When y is in the cut-locus of x, there
may be multiple distinct length-minimizing geodesics connecting x and y. For such a pair, cpx,yq

fails to have a well-defined gradient, but admits a Clarke generalized gradient

BCpx,yqcpx,yq “ cvxtp´ Logγx y, ´ Logγy xq : γ is a length-minimizing geodesic x⇝ yu

where Logγ denotes the Riemannian logarithm with respect to a choice of length-minimizing
geodesic.

When xspeq and xtpeq are sufficiently close together for each edge e P E, the potential function
VF has a well-defined gradient at x given on each vertex v P V by

p∇xVFpxqqv “
ÿ

ePE
speq“v

`

DxvFspeq

˘˚
´

´ LogFspeqxv

`

Ftpeqxtpeq

˘

¯

`
ÿ

ePE
tpeq“v

`

DxvFtpeq

˘˚
´

´ LogFtpeqxv

`

Fspeqxspeq

˘

¯

.

The gradient ∇xVFpxq defines a vector field on C0 on the set of zero-cochains x P C0 such
that there is a unique length-minimizing geodesic between Fspeqxspeq and Ftpeqxtpeq for all edges
e P E.

Definition 7.2.32. A Hadamard manifold is a Riemannian manifold pM,gq that is complete,
simply connected, and has non-positive sectional curvature at every point.

Remark 7.2.33. Every Hadamard manifold is a finite dimensional Hadamard space—a nonlinear
generalization of a Hilbert space. Specifically, every Hadamard space is complete metric space,
such that for every pair of points x,y, there is a point m, called the midpoint of x and y, such
that for all z:

dpz,mq2 `
dpx,yq2

4
ď
dpz, xq2 ` dpz,yq2

2
.
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Every Hilbert space with its norm-induced distance function is a Hadamard space with midpoint
given by m “

x`y
2 .

Proposition 7.2.34. Let F be a Riemannian network manifold on a network G “ pV,Eq. If Me is a
Hadamard manifold for all e P E, then the gradient vector field ∇xVFpxq is globally defined.

Proof. In a Hadamard manifold M, every pair of points x,y P M is joined by a unique length-
minimizing geodesic. It follows that the cut-locus of every point x P M is empty. The the finite
product of Hadamard manifolds, equipped with the product metric, is a Hadamard manifold.
Therefore the space of one-cochains C1 is a Hadamard manifold, and the gradient ∇xVFpxq is
well-defined for all x P C0.

When every edge manifold is a Hadamard space, one may consider the gradient descent on
C0

9x “ ´∇xVFpxq , (8)

for any choice of initial cochain x0 P C0. Under suitable conditions on the vertex manifolds Mv

and the restriction maps Ff : Mv Ñ Me, every initial cochain has a globally defined gradient
flow xt : Rě0 Ñ C0 which converges to a global section.

Theorem 7.2.35. Let F be a Riemannian network sheaf on a network G which satisfies the following
conditions.

(i) Every vertex and edge manifold Mσ is a Hadamard manifold.

(ii) The set of global sections ΓpFq is non-empty.

(iii) Every restriction map is a totally-geodesic isometry.

For every zero-cochain x0 P C0, there is a globally defined negative gradient flow xt satisfying Equation (8),
initialized at x0, which converges to a global section.

Proof. The potential function VF is a continuous function on C0. We now check that VF is
geodesically convex. Let γptq be a geodesic in C0, with 0 ď t ď 1. Each component γvptq is
a geodesic in Mv. Since all restriction maps are geodesically complete, for each edge e, the paths
ηspeqptq :“ Fspeqpγspeqptqq and ηtpeqptq :“ Ftpeqpγtpeqptqq are geodesics in Me. The metric of a
Hadamard space is jointly convex along geodesics [9, Section 1.2], giving the inequality

de
`

ηspeqptq,ηtpeqptq
˘

ď p1´ tqde
`

ηspeqp0q,ηtpeqp0q
˘

` tde
`

ηspeqp1q,ηtpeqp1q
˘
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for all t P r0, 1s, where de is the distance function on Me. It follows that the map

t ÞÑ
1

2
de

`

ηspeqptq,ηtpeqptq
˘2

is convex in t. Summing over all edges e P E yields that VF is geodesically convex.
Since VF is a continuous and geodesically convex function on a Hadamard manifold C0, V

has globally defined negative gradient flows xt satisfying Equation (8). Moreover, since VF has
a global sections (and thus obtains its minimum), this gradient descent converges to a global
section as t Ñ 8 [9, Theorem 5.1.16].

Remark 7.2.36. Many of these conditions can be weakened in practice. Moreover, such results
can be extended, with care, to the infinite dimensional setting via Hadamard space theory.

Example 7.2.37. We return to Example 7.2.31. Recall that the constant Riemannian network sheaf
N1 on a network G has all vertex and vertex and edge stalks given by the univariate Gaussian
statistical manifold N1, equipped with the Fisher information metric. All restriction maps are
given by the identity function.

The univariate Gaussian statistical manifold N1 is isometric, up to a constant scaling factor,
to the two-dimensional hyperbolic plane [5]. The hyperbolic plane is a Hadamard manifold.
Therefore by Theorem 7.2.35, for any choice of an initial zero-cochain x0 P C0, the negative
gradient flow xt of the potential function VN1 converges to a global section x8 of N1.

7.3 affine sheaves

As a straightforward example of a class of C0-nonlinear Hilbert sheaves, we may consider the
class of Hilbert sheaves with affine maps.

Definition 7.3.1. An affine network sheaf on a finite graph G “ pV,Eq is a C0-nonlinear network
Hilbert sheaf whose restriction maps are densely defined affine. That is, each restriction map
Ff : Fpvq Ñ Fpeq can be written Ffpxq “ Afx` bf, where Af is a densely defined linear operator,
and bf P Fpeq.

Remark 7.3.2. As usual, the most difficult in part in confirming that an assignment of stalks and
restriction maps is an affine network sheaf is to check that the coboundary operator δ̊ is closable.
In this case, we observe that δ̊ is closable if and only if for every edge e with incoming covering
maps f,g, we have that

”

´Af Ag

ı

is closable.
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7.3.1 Affine dynamics

When F is an affine network sheaf, the potential function VF can be seen to be convex by a
straightforward computation. By Proposition 7.2.20, we get heat flows for all initial x0 P C0pG;Fq.
Under suitable conditions, we can meaningfully analyze this heat flow. Note that the coboundary
operator δ : C0pG;Fq Ñ C1pG;Fq is itself an affine map, and can be written as δpxq :“ Aδx ` bδ,
where Aδ is a closed densely defined linear operator. Say that an affine Hilbert sheaf is proper if
the following conditions hold.

(i) bδ P DompA˚
δq.

(ii) RpAδq Ď DompA˚
δq.

When F is proper affine, the heat flow can be written as

9x “ ´A˚
δpAδx ` bδq

for all initial conditions x0. We may also prove the following convergence result.

Proposition 7.3.3. Let F be a proper affine network sheaf with coboundary operator δx “ Aδx ` bδ. We
may characterize the asymptotic behavior of a heat flow xt with initial value x0 as follows.

(i) If bδ P RpAδq, then xt converges to the nearest global section to x0. That is, x8 :“ limtÑ8 xt is the
nearest point to x0 such that Aδx8 “ ´bδ.

(ii) If RpAδq has closed range, then x8 is the nearest OLS solution to the inconsistent linear system
Aδx “ ´bδ.

Proof. If bδ P RpAδq, then we may write ´bδ “ Ac for some c P C0pG;Fq, and the space of
solutions tx : Aδx ` bδ “ 0u “ c` kerpAδq. Letting yt :“ xt ` c, we see that 9yt “ ´A˚

δAδyt,
and evolves according to the C0-semigroup yt “ e´tA˚

δAδy0, and converges to y8 “ PkerAδy0,
where PkerAδ is the orthogonal projection onto the kernel of Aδ. It follows that x8 “ y8 ´ c is
the orthogonal projection of x0 onto the solution space c` kerpAδq.

If RpAδq has closed range, then Aδ admits a bounded, globally defined Moore-Penrose pseu-
doinverse A:

δ : C1pG;Fq Ñ C0pG;Fq. Set xpsq :“ ´A
:

δbδ. Note that A˚
δAδA

:

δbδ “ A˚
δbδ, so xpsq is

a critical point for the heat dynamics. Thus, the flow xt can be written as xt :“ e´A˚
δAδx0 ` xpsq,

which converges to xt :“ PkerAδx0 ` xpsq. This point may be easily identified with the nearest
OLS solution to Aδx “ ´bδ to the initial value x0.

Remark 7.3.4. These dynamics are already quite useful from the standpoint of cellular sheaf
theory. One dynamics-centric perspective on network sheaves is that global sections encode so-
lutions to networked systems of homogeneous linear equations. Heat dynamics then provide a
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distributed approach to finding a solution to the networked system. When we replace the linear
restriction maps with affine maps, the C0-heat flow now encodes the best OLS solution to a (po-
tentially inconsistent) inhomogeneous system of equations. This approach to nonlinear dynamics
increases the expressive power of network sheaves.

7.3.2 Affine cohomology

While C0-nonlinear Hilbert sheaves are largely motivated from a "dynamics first" perspective,
affine network sheaves still admit a cohomological interpretation. Using the language of torsors,
we may understand the structure of affine sheaves and their global sections in terms of the coho-
mology of the underlying linear maps. This perspective and interpretation are in line with recent
work of Ghrist and Cooperband on network torsors, which they used to study visual paradoxes
[46]. The broader connection between torsors, sheaves, and cohomology are well established [47,
124]. For a gentle introduction to torsors, see John Baez’ expository piece [11].

For simplicity, we assume we are working with an affine network sheaf F with only finite
dimensional stalks, but this cohomology and interpretation can be extended to the bounded
infinite dimensional setting given suitable closed-range assumptions. Recall that an affine space
is a triple pA,W,µq, where A is a set, W is a vector space, and µ :W ˆA Ñ A is a free, transitive
action of the additive topological group of W on A. It immediately follows that the map µp´, xq :

W Ñ A is a bijection for each x P A.

Notation 7.3.5. For every x P A and w P W, we write the action w` x :“ µpw, xq. For each pair
x,y P A, we denote the unique w P W such that w` x “ y by y´ x.

We think of the affine space A as a copy of W "without origin"—that is, as a torsor over a
one-point space with respect to the additive topological group pW, `q, where one can measure
differences but not absolute location.

Let pA0,W0,µ0q and pA1,W1,µ1q be affine spaces. A set map f : A0 Ñ A1 is an affine map if
there is a linear map L :W0 Ñ W1 such that fpx`wq “ fpxq ` Lw for all x P A0 and w P W0.

Remark 7.3.6. If the affine spaces pAj,Wj,µjq are merely viewed as torsors with respect to the
additive group structure of a vector space, the class of affine maps is a strict subset of the the
class of morphisms of torsors. We require the map L :W0 Ñ W1 to be linear—not merely a group
homomorphism of the additive groups pW0, `q and pW1, `q. However, treating affine spaces as
torsors with respect to the topological group structure enforces linearity of all torsor morphisms.

We now apply the recent notion of inhomogeneous network torsors [46] to affine network
sheaves.
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Definition 7.3.7 (Affine network torsor). Let G “ pV,Eq be a finite network, and F : G Ñ FinHilbk
be a finite dimensional weighted network sheaf. A finite dimensional affine network torsor over
G is a cellular sheaf of topological spaces A : G Ñ Top such that the following conditions hold.

(i) Each stalk Apσq is equipped with a free transitive continuous group action µ : Fpσq ˆ

Apσq Ñ Apσq of the additive topological group of Fpσq. This gives each stalk the structure
of an affine space.

(ii) For each covering morphism f : v Ñ e in G, the restriction map Af : Apvq Ñ Apeq is
compatible with the topological group actions in the sense that

Afpw` xq “ Ffpwq ` Afpxq

for all x P Apvq and w P Fpvq. That is, Af is equivariant up to the linear map Ff.

We call F the linear structure sheaf of the affine network torsor A. When we wish to specify
the underlying linear structure sheaf, we call A an F-affine network torsor.

Remark 7.3.8. A finite dimensional F-affine network torsor consists of essentially the same data
as an affine network sheaf (Definition 7.3.1) whose affine restriction maps have underlying linear
components given by F. However, the lack of objective origin in an affine network torsor means
that multiple affine network sheaves may have the same torsor structure.

Remark 7.3.9. Definition 7.3.7 may be viewed as a specialization of inhomogeneous network tor-
sors [46, Definition 6.1] to the additive groups of vector spaces, subject to the additional constraint
that all actions and maps are continuous.

Definition 7.3.10. Let A,A 1 be finite dimensional affine network torsors over the same linear
structure sheaf F : G Ñ FinHilbk. A morphism of F-affine network torsors from A to A 1 is
a natural transformation ϕ : A ñ A 1 whose component maps ϕσ : Apσq Ñ A 1pσq are Fpσq-
equivariant.

Remark 7.3.11. Since each stalk-map ϕσ : Apσq Ñ A 1pσq must be Fpσq-equivariant, the linear
portion ϕσ must be the identity map, making ϕσ a translation. That is, there is some w P Fpσq

such that ϕσp´q “ w` p´q. Since a translation is a bijection, all morphisms of F-affine network
torsors are isomorphisms.

We may recover a classification result for F-affine network torsors similar to [46, Theorem 6.2].

Theorem 7.3.12. Let G “ pV,Eq be a finite network, and F : G Ñ FinHilbk be a finite dimensional
weighted network sheaf. There is a canonical bijection

H1pG;Fq ÐÑ
␣

isomorphism classes of F-affine network torsors
(

.
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Proof. Let rys P H1pG;Fq be a cohomology class with representative y P C1pG;Fq. We may build
an F-affine network torsor Ay : G Ñ Top with the following data.

• Each stalk Aypσq is the topological space underlying the Hilbert space Fpσq.

• The group action on Aypσq is exactly addition on Fpσq.

• For a covering map f : v Ñ e in G, the restriction map Af is given by

A
y
fpxq “

$

’

&

’

%

Ffx if f has positive orientation

Ffpxq ´ ye if f has negative orientation ,

where ye is the component of y living in Aypeq “ Fpeq.

Ay is easily seen to be an F-network torsor. Moreover, when y, y 1 P rys are representatives of the
same cohomology class of H1pG;Fq, there is an element b P C0pG;Fq such that y 1 ´ y “ δb, where
δ : C0pG;Fq Ñ C1pG;Fq is the linear coboundary map induced by F. From this b, we derive an
isomorphism of F-affine network torsors ϕ : Ay ñ Ay 1

with naturality squares

Aypvq Ay 1

pvq

Aypeq Ay 1

peq

Aypuq Ay 1

puq

ϕv:x ÞÑx`bv

A
y
f A

y 1

f

ϕe:x ÞÑx`Ffbv

A
y
g

ϕu:x ÞÑx`bu

A
y 1

g

where f : v Ñ e and g : u Ñ e are assigned positive and negative orientations respectively.
Conversely, let A be an F-affine network torsor. To construct a cocycle from A, fix an "origin"

bv P Apvq for each vertex v. For an oriented edge e “ pu, vq with covering morphisms g : u Ñ e

and f : v Ñ e, take ye :“ fpbvq ´ gpbuq, yielding a cocycle y :“ pyeqePE. For a different choice of
origins tb 1

vuvPV, one may check

fpb 1
vq ´ gpb 1

uq “ f
`

pb 1
v ´ bvq ` bv

˘

´ g
`

pb 1
u ´ buq ` bu

˘

“
`

fpbvq ´ gpbuq
˘

`
`

Ffpb 1
v ´ bvq ´ Fgpb 1

u ´ buq
˘

and conclude that ry 1s “ rys. Thus this process yields a well-defined cohomology class ryAs P

H1pG;Fq. By a similar argument, when A and A 1 are isomorphic as F-affine network torsors,
ryAs “ ryA 1

s.
Finally, by observing that rys ÞÑ rAys and rAs ÞÑ ryAs are inverse operations, we establish the

desired natural bijection.
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Remark 7.3.13. The correspondence between isomorphism classes of F-affine network torsors
and cohomology classes H1pG;Fq gives a way to discuss "the" affine network sheaf corresponding
to an affine network torsor. For an F-affine network torsor A, pick a 1-cochain b P H1pG;Fq such
that rAs “ rAbs. Since the stalks of Ab are exactly the vector spaces stalks of the structure sheaf F
with their origins, we may view Ab as an affine network sheaf (Definition 7.3.1). Different choices
of representative b yield different sheaves.

Let AF denote the collection of isomorphism classes of F-affine network torsors. The bijective
correspondence AF – H1pG;Fq endows AF with the structure of a vector space. This vector
space structure may be described explicitly at the level of affine network torsors.

Definition 7.3.14. Let A and A 1 be F-affine network torsors. The sum A ‘ A 1 is the F-affine
network torsor with the following structure.

• For each σ P V > E, the stalk over σ is given by

pA ‘ A 1qpσq “
`

Apσq ˆ A 1pσq
˘

{ „ ,

where px, x 1q „ px`w, x 1 ` p´wqq for all w P Fpσq. The action of Fpσq on pA ‘ A 1qpσq is
given by w` rpx, x 1qs “ rpw` x , x 1qs.

• For each covering morphism f : v Ñ e, the restriction map pA ‘ A 1qf : pA ‘ A 1qpvq Ñ

pA ‘ A 1qpeq is given by

pA ‘ A 1qfrpx, x 1qs “ rpAfpxq,A 1
fpx

1qqs .

One may straightforwardly check that the sum A‘A 1 is a well-defined F-affine network torsor.
After "remembering the origin" and identifying Apσq – A 1pσq – Fpσq, the stalk pA ‘ A 1qpσq is
given by the vector space quotient Fpσq ‘ Fpσq{ kerp

”

I I

ı

q.

Remark 7.3.15. This sum operation may be compared to the Baer sum of two group extensions.
Given a pair of abelian groups A and B, a group extension

0 Ñ A
i−Ñ E

p−Ñ B Ñ 1

may naturally be viewed as a network A-torsor [46, Definition 4.2] over the base space B, viewed
as an edgeless graph with vertex set B. The stalk over b P B is given by the fiber p´1pbq Ď E,
with A acting freely and transitively via addition through i. Given two group extensions E1 and
E2, the Baer sum is given by the Z-module quotient

E1 ‘Baer E2 :“
tpe1, e2q P E1 ‘ E2 : p1pe1q “ p2pe2qu

tpi1paq, ´i2paqq : a P Au
,
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and serves as a concrete representation for the abelian group structure of Ext1pB,Aq, which
classifies abelian group extensions. The network A-torsor corresponding to the Baer sum E1‘Baer

E2 is exactly the sum E1 ‘ E2 as network A-torsors. In the nonabelian case, one could plausibly
study a networked Schreier theory through inhomogeneous network torsors.

One may also describe the scaling of an F-affine network torsor.

Definition 7.3.16. Let A be an F-affine network torsor, and λ P k a scalar. The scaled network
torsor λA has the following structure.

• For each σ P V > E, the stalk over σ is given by

pλAqpσq “
`

Apσq ˆ Fpσq
˘

{ „ ,

where px,wq „ px`w 1,w` p´λw 1qq for all w 1 P Fpσq. The action of Fpσq on pλAqpσq is
given by w 1 ` rpx,wqs “ rpx , w 1 `wqs.

• For each covering morphism f : v Ñ e, the restriction map pλAqf : pλAqpvq Ñ pλAqpeq is
given by

pλAqfrpx,wqs “ rpAfpxq,Ffpwqs .

Again, it is straightforward to check that this is an F-affine network torsor.

Corollary 7.3.17. Define operations on AF by rAs ` rA 1s “ rA‘A 1s and λrAs “ rλAs. These operations
define a vector space structure on AF, which is isomorphic to the vector space structure on H1pG;Fq.

Proof. Let Φ : AF Ñ H1pG;Fq denote the bijective map ΦprAsq “ ryAs. It suffices to prove that Φ
is linear with respect to these structures. We first prove additivity of ΦprAs ` rA 1sq “ ΦprA‘A 1sq.
Fix an origin bσ “ rpaσ,a 1

σqs P A‘A 1. Working on an edge ewith incoming covering morphisms
f : v Ñ e and g : u Ñ e, we compute:

pA ‘ A 1qgpbuq ´ pA ‘ A 1qfpbvq “ rpAgau,A 1
ga

1
uqs ´ rpAfav,A 1

fa
1
vqs

“ rpAgau,A 1
gauqs ´

“`

Afav ` pA 1
fav ´A 1

gauq , A 1
gau

˘‰

“ pAgau ´ Afavq ` pA 1
gau ´ A 1

favq .

It follows that ΦprA ‘ A 1sq “ ΦprAsq `ΦprA 1sq. To prove Φ respect scaling, we proceed by a
similar argument. Fix a scalar λ P k and an origin bσ “ rpaσ,wσqs for each stalk of pλAqpσq.
Again working on an edge e with incoming covering morphisms f : v Ñ e and g : u Ñ e, we
compute:

pλAqgpbuq ´ pλAqfpbvq “ rpAgau,Fgwuqs ´ rpAfav,Ffwvqs
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“ rpAgau,Fgwuqs ´
“`

Agau , Ffwv ` λpAfav ´ Agauq
˘‰

“ pFgwu ´ Ffwvq ` λpAgau ´ Afavq.

Writing c for the 1-cochain with edge components ce “ pFgwu ´ Ffwvq, we see that c is a
coboundary, from which we conclude that ΦpλrAsq “ ΦprλAqs “ λΦprAsq. Thus Φ is linear
isomorphism, and these operations give AF a vector space structure.

Using the identification AF – H1pG;Fq, we may better understand the structure of global
sections of affine network sheaves.

Definition 7.3.18. Let A be a finite dimensional F-affine network torsor. A point x P
ś

vPVApvq

is a global section of A if for all edges e P E with incoming covering morphisms f : u Ñ e and
g : v Ñ e, we have Afpxuq “ Agpxvq.

Notation 7.3.19. Given an F-affine network torsor A, we may extend the zero-cochain concept and
write C0pG;Aq :“

ś

vPVApvq. This is itself an affine space under the component-by-component
action of the vector space C0pG;Fq. One recovers an affine coboundary map δaff : C0pG;Aq Ñ

C1pG;Fq edgewise via
pδaffxqe “ Agxv ´ Afxu ,

where e is viewed as a directed edge from u to v, and f : u Ñ e, g : v Ñ e are the corresponding
covering morphisms. Note that the codomain is a 1-cochain of the structure sheaf F, as we are
taking differences in each affine edge stalk Apeq.

Lemma 7.3.20. The affine coboundary map δaff of an F-affine network torsor A has linear part given by
the linear coboundary of the structure of the structure sheaf F. Moreover, a global section of A is exactly a
point x P C0pG;Aq such that δaffpxq “ 0.

Proposition 7.3.21. Let A be a F-affine network torsor. The following are equivalent.

(i) A admits a global section.

(ii) ΦprAsq “ r0s is the is the trivial cohomology class in H1pG;Fq.

(iii) For every affine network sheaf Ab corresponding to the network torsor A, the inhomogeneous linear
system δx “ ´b is consistent.

Proof. (piq ðñ piiq): x is a global section of A if and only if for every directed edge e “ pu, vq
with covering morphisms f : u Ñ e and g : v Ñ e, we have Agxv ´ Afxu “ 0. Hence A admits a
global section if and only if ΦprAsq “ r0s.

(piiq ðñ piiiq): ΦprAsq “ r0s if and only if rAs “ rAbs whenever b P r0s “ Rpδq. Meanwhile,
b P Rpδq if and only if δx “ ´b is consistent.
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This result provides a direct interpretation of the cohomology of the structure sheaf F. H1pG;Fq

exactly encodes obstructions to the consistency of the inhomogeneous linear system δx “ ´b, or
equivalently, the existence of a global section for an F-affine network torsor. These obstructions
may be visualized as translations of the affine hyperplane Rpδaffq away from the origin. Every
nontrivial cohomology class represents a different translation of the affine hyperplane. The 0-
cohomology H0pG;Fq similarly represents directions of non-variation for the affine coboundary
δaff. That is, H0pG;Fq encodes what the space of global sections of A looks like, given that a
global section exists. Equivalently, H0pG;Fq describes the directions of variation for the space of
OLS solutions to δaff “ 0.

7.4 continuous piecewise affine hilbert sheaves

We now turn our attention to a class of non-smooth network Hilbert sheaves whose restriction
maps are continuous piecewise affine functions. Such sheaves will have a coboundary map which
is itself continuous piecewise affine, and a corresponding locally quadratic potential function.
Clarke gradient descent with respect this potential function yields (non-unique) globally defined
C0-nonlinear heat flows with well behaved long-term behavior.

7.4.1 Continuous piecewise affine maps

Let X be a finite dimensional vector space. A polyhedron in X is a subset P Ď X which is
the intersection of finitely many closed affine halfspaces. That is there are a collection of affine
functionals ℓj : Rn Ñ R and constants bj P R such that

P “
␣

x P X : ℓjpxq ď bj for all j “ 1, . . . ,n
(

.

A polyhedron P is necessarily closed and convex, but may be unbounded. P also has a collec-
tion of faces, which are sets of the form PXH, where H is an affine hyperplane of codimension
1, where P is entirely contained in one closed affine halfspace determined by H. Both P itself and
∅ are faces of P.

Definition 7.4.1. Let X be a finite dimensional vector space. A polyhedral complex in X is a finite
collection of polyhedra P that satisfy the following axioms.

(i) Face closure. If P P P and Q is a face of P, then Q P P.

(ii) Intersection condition. If P and Q are polyhedra in P, the intersection PXQ is a (possibly
empty) shared face of P and Q.
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We call each polyhedron P P P a cell of P.

Given a finite dimensional vector space X, a polyhedral decomposition of X is a polyhedral
complex P such that

Ť

PPP P “ X. To each polyhedral decomposition, there are a collection of top
dimensional cells tT1, . . . , Tku

Using such polyhedral decompositions, we may define the class of piecewise affine maps.

Definition 7.4.2. Let X and Y be finite dimensional vector spaces. A function f : X Ñ Y is
continuous piecewise affine (CPWA) if there is a polyhedral decomposition P “ tPju

n
j“1 of X,

linear maps tAju
n
j“1, and constants tbju

n
j“1 such that

f
∣∣
Pj

pxq “ Ajx` bj

for all x P Pj.

Notation 7.4.3. Given a continuous piecewise affine map f, we denote the underlying polyhedral
decomposition by Pf, and the affine map on the cell P P Pf by fPpxq “ APx` bP.

By definition, a continuous piecewise affine map is continuous; when two polyhedra Pi and
Pj intersect in a shared face Pk, all three maps f

∣∣
Pi

, f
∣∣
Pj

, and f
∣∣
Pk

agree on Pk. CPWA maps have
the following closure properties.

Lemma 7.4.4. Let f, f 1 : X Ñ Y, g : X Ñ Z, and h : W Ñ Z, and i : Y Ñ Z be CPWA maps, and let

λ P R. The maps λf, i ˝ f, f` f 1,

»

–

f

g

fi

fl, and f‘ h are all CPWA maps.

Proof. Let P and Q denote the polyhedral decomposition of X and Y underlying the maps f :

X Ñ Y and i : Y Ñ Z. The composition i ˝ f is easily seen to be CPWA over the polyhedral
decomposition f´1pQq whose underlying cells are intersections of the form P X f´1pQq where
P P P and Q P Q. The scaling λf is CPWA since a scaling of an affine map is affine. Let P and Q be
the polyhedral decompositions underlying f and f 1 respectively. Let P _ Q denote their coarsest
common refinement via

P _ Q “ tPXQ : P P P and Q P Qu .

The map f` f 1 is CPWA over the common refinement P_Q. The other maps

»

–

f

g

fi

fl, and f‘h can

be viewed as special cases of the sum.

Corollary 7.4.5. Let X1, . . . ,Xm, Y1, . . . Yn be a collection of finite dimensional vector spaces, and fij :
Xj Ñ Yi be a CPWA map for each pair of indices i, j. Let X “

À

j Xj and Y “
À

i Yi, and let M : X Ñ Y

be the finite block map rfijs. The map M is CPWA.
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Proposition 7.4.6. Every CPWA map f : X Ñ Y is globally Lipschitz.

Proof. Let x,y P X, and let γ : r0, 1s Ñ X be the straight line path from x to y. Let 0 “ t0 ă t1 ă

¨ ¨ ¨ ă tk “ 1 denote the times at which γptq switches between maximal cells of the underlying
polyhedral decomposition P. Letting M “ maxt}AP}op : P P Pu, we compute:

}fpxq ´ fpyq}Y “

›

›

›

›

›

k
ÿ

j“1

ż tj

tj´1

d

dt
pf ˝ γqptqdt

›

›

›

›

›

ď

k
ÿ

j“1

ż tj

tj´1

›

›

›

›

d

dt
pf ˝ γqptq

›

›

›

›

dt

ď

k
ÿ

j“1

ż tj

tj´1

M}x´ y}dt

“ M}x´ y} .

Remark 7.4.7. CPWA maps arise in the context of feed-forward neural networks equipped with
the rectifiable linear unit (ReLU) map as an activation function. Each layer of the neural network
is the composition of an affine map f : Rn Ñ Rm and the conic projection onto the positive
orthant ReLUpx1, . . . , xmqT “

`

maxp0, x1q, . . . , maxp0, xmq
˘T . Since the conic projection ReLU is

CPWA, the composition of all layers is itself CPWA by Lemma 7.4.4.

7.4.1.1 Clarke gradients of CPWA maps

Let f : X Ñ Y be CPWA with underlying polyhedral decomposition P. Let T Ď P denote the
collection of top dimensional cells. The maximal cells cover the entirety of X, and intersect in
lower-dimensional cells. The interior of P is given by the set

P̊ :“
ď

TPT

T̊ ,

where T̊ is the non-empty topological interior of the maximal cell T .
The CPWA map f : X Ñ Y is differentiable on P̊, with derivative Dxf “ ATx for each top cell

T P T and x P T̊ . It follows that the potential function Vpxq “ 1
2}fpxq}2 has a well-defined gradient

on P̊ given by
∇Vpxq “ A˚

T pATx` bT q

for all x P T̊ .
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In general, f (and hence V) will not be differentiable on the boundaries of top cells; there can
be a cusp at the boundaries where top cells meet. However, since f is globally Lipschitz, the
potential function V is locally Lipschitz and admits a globally non-empty Clarke gradient

BVpxq “ cvx tA˚
T pATx` bT q : T Q x is a top cell containing xu .

When x is in the interior of a top cell of P, the Clarke gradient is exactly the gradient ∇Vpxq

(modulo a pair of set braces). On the other hand, when x is in the intersection of multiple top
cells, the Clarke gradient is the convex hull of the gradients of the affine functions of the top cells
containing x.

Example 7.4.8. Consider the ReLU map ReLU : R Ñ R defined by ReLUpxq “ maxpx, 0q. This
CPWA map has an associated potential function Vpxq “ 1

2 ReLUpxq2. This potential function is
continuously differentiable on R, with gradient ∇Vpxq “ ReLUpxq.

The shifted ReLU map fpxq “ ReLUpxq ` 1 is also a CPWA map with potential function Vfpxq “

1
2p1` ReLUpxqq2. This potential function is not differentiable at 0, but has a well-defined Clarke
gradient on R given by

BVfpxq “

$

’

’

’

’

&

’

’

’

’

%

0 if x ă 0

r0, 1s if x “ 0

x` 1 if x ą 0.

Example 7.4.9. Let f : R Ñ R be the CPWA map fpxq “ 1` |x|. The potential function Vfpxq “

1
2}fpxq}2 has Clarke gradient

BVfpxq “

$

’

’

’

’

&

’

’

’

’

%

x´ 1 if x ă 0

r´1, 1s if x “ 0

x` 1 if x ą 0.

Remark 7.4.10. While the Clarke gradient BVf of the potential function associated to a CPWA
function f : X Ñ Y is generically multi-valued, the set of points x P X such that BVpxq is multival-
ued has Lebesgue measure zero.

7.4.1.2 CPWA kernels

We now investigate the zero-sets of continuous piecewise affine maps. While lacking the requisite
categorical properties, we adopt the nomenclature of kerpfq for the zero set tx P X : fpxq “ 0u for
a CPWA map f : X Ñ Y.
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Recall that the kernel of an affine map fpxq “ Ax` b can be written as k` kerpAq, where k is
any choice of a point k P kerpfq. Note that kerpfq is empty if and only if b R RpAq. We may fully
characterize the kernel of a CPWA map by the kernel of its component maps; let f : X Ñ Y be
CPWA with underlying polyhedral decomposition P and affine maps fP “ APx` bP for each
P P P. Let kerPpfq “ kerpfPq X P, treating fP as a globally-defined affine map fP : X Ñ Y. The
kernel of f is exactly

kerpfq “
ď

PPP

kerPpfq.

For a linear map A : X Ñ Y between finite dimensional Hilbert spaces, the kernels kerpAq and
kerpA˚Aq agree. We now investigate the corresponding relationship for CPWA maps. We begin
with the following lemma about affine maps.

Lemma 7.4.11. Let fpxq “ Ax ` b be an affine map from X to Y. We have an agreement of kernels
kerpA˚fq “ kerpfq if and only if kerpfq ‰ 0.

Proof. We always have the inclusion kerpfq Ď kerpA˚fq. Since kerpA˚Aq “ kerpAq, if kerpfq is
non-empty, there is a k P kerpfq. We may compute:

kerpfq “ k` kerpAq

“ k` kerpA˚Aq

“ kerpA˚fq.

Therefore if kerpfq is non-empty, then kerpA˚fq “ kerpAq. Conversely, a least-squares solution
xLS to the equation Ax “ b must satisfy the normal equation A˚Ax “ A˚b, which forces ´xLS P

kerpA˚fq. Therefore kerpfq ‰ kerpA˚fq when kerpfq “ ∅.

7.4.2 CPWA dynamics

Let f : X Ñ Y be a CPWA function, and V the potential function Vpxq “ 1
2}fpxq}2. We may define

the CPWA Laplacian L as the multivalued Clarke gradient L :“ BV . This CPWA Laplacian may
be written explicitly as

Lpxq “ cvxtA˚
T fpxq : T Q x is a top dimensional cellu .

The Laplacian L is single-valued on the full-measure subset P̊ Ď X. Using the CPWA Laplacian,
we may define dynamics on X via 9x P ´Lx. Since L is generically discontinuous and multi-valued,
we consider Filippov solutions to this differential inclusion.
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Definition 7.4.12. Let f : X Ñ Y be a CPWA function with CPWA Laplacian L : X Ñ X. A CPWA
heat flow of f on r0, T s with initial point x0 P X is an absolutely continuous curve xptq P X for
t P r0, T s such that xp0q “ x0 and 9xptq P ´Lpxq for all t.

Remark 7.4.13. In the language of control theory, the dynamics 9x P ´Lpxq of CPWA heat flow
define a state-dependent switch affine system. These systems have recently been extensively
studied [50, 68, 69, 71, 111], with applications to AC/DC power conversion [3, 105] and neural
networks [41, 116]. Most of the literature approaches state-dependent switch affine systems from
the perspective of controllability, and the problem of defining a state-dependent switching rule
that has well-behaved dynamics. More importantly, CPWA dynamics differ from general switch
affine systems in that the potential function V defines a global Lyapunov function, granting
additional control over trajectories.

Proposition 7.4.14. Let f : X Ñ Y be a CPWA map with CPWA Laplacian L. The Cauchy problem

9x P ´Lx

xp0q “ x0

has a globally defined solution for each initial value x0.

Proof. Since f is Lipschitz continuous, the potential function Vpxq “ 1
2}fpxq}2 is locally Lipschitz.

It follows that the negative Clarke gradient ´BVpxq is an upper semicontinuous map [24]. Local
existence of a Filippov solution up to the boundary of the closed ball Bp0, rq Ď X follows [39,
Theorem 7.2]. Since f is locally affine, we may bound the norm } 9x} ď M}x} ` a for a suitable
choice of constants M and a. Thus the trajectory cannot escape to infinity in finite time, and all
Filippov solutions can be extended to the time-interval r0, 8q.

Uniqueness, on the other hand, cannot be guaranteed in general. While Filippov trajectories
inside top-cells are unique, when a trajectory gets stuck in the boundary of a collection of cells,
trajectories can be extended in multiple distinct ways according to the choice of a different value
in ´L.

Example 7.4.15. Consider the CPWA f : R Ñ R given by fpxq “ 1´ |x|. For every T ě 0, the path

xt “

$

’

&

’

%

0 if 0 ď t ď T

1´ eT´t if t ą T

is a Filippov solution to the CPWA heat flow of f. This is essentially CPWA modification of
Norton’s dome [94].
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The asymptotic behavior of a bounded CPWA heat flow is governed by the following lemma.

Lemma 7.4.16. Let xt be a Filippov solution to the heat flow of a CPWA map f : X Ñ Y. If xt is bounded,
then x8 :“ limtÑ8 xt exists and is a generalized critical point of Vpxq “ 1

2}fpxq}2.

Proof. This follows directly from the work of Drusvyatskiy, Ioffe, and Lewis on generalized gra-
dient descent. Identify X – Rn. Since Vpxq is piecewise a polynomial in the underlying variables
x1, . . . , xn, and each polyhedral region on which V is piecewise-defined can be expressed as the
solution set to finitely many linear inequalities, the function V : Rn Ñ R is semialgebraic. Fix
a trajectory xt which is constrained to a compact set C Ď Rn. Vpxq is Lipschitz on C, so xt is a
so-called curve of near-maximal slope [37, Proposition 6.4] and moreover converges to a generalized
critical point of V [37, Corollary 6.7].

By restricting our attention to class of Filippov solutions to the CPWA heat flow that avoid
spending superfluous time on the boundaries of cells, we may prove the boundedness of trajec-
tories.

Definition 7.4.17. Let f : X Ñ Y be a CPWA function, and let xt be a CPWA heat flow. xt is fast
if 9xt P ´Lpxtq has maximal norm for all t where 9xt is defined.

Example 7.4.18. Consider the CPWA Norton’s dome (Example 7.4.15) with CPWA function
fpxq “ 1 ´ |x|. A solution xt to the CPWA heat flow of f with initial value x0 “ 0 is fast if
and only if xt ‰ 0 for all t ą 0.

Proposition 7.4.19. Let f : X Ñ Y be a CPWA function, and that xt is a fast solution to the CPWA heat
flow. If xt is in the boundary of a top dimensional cell T for all t P rτ, τ` ϵq, then every CPWA heat flow
yt such that yt “ xt for all t ď τ slides for all t P rτ, τ` ϵq.

Proof. Suppose there is such a Filippov solution yt. Let t0 :“ inftt : yt ‰ xtu. At time t0, there
must be a vector in ´Lpxt0q which points outside of the interior of the polyhedral face M on
which xt is sliding. Since every point in ´Lpxt0q projects onto the same point M, the velocity
selection at time t0 must be non-maximal, contradicting the fact that xt is a fast solution.

Remark 7.4.20. This argument essentially demonstrates that fast solutions avoid superfluous
sliding along the boundary of a cell, commonly called a sliding mode for a Filippov solution to a
discontinuous differential equation. Whenever a fast solution xt can exit a sliding mode, it does.

Theorem 7.4.21. Let f : X Ñ Y be a CPWA function with potential function Vpxq “ 1
2}fpxq}2. Every

fast solution to the CPWA heat flow is bounded.

Proof. Let xt be a fast solution to the CPWA heat flow. We fix the following notation.
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• T is the finite collection of top dimensional cells underlying f.

• gT pxq “ ATx` bT is the restriction of f to T P T.

• rt :“ }xt}.

• st “ maxtr´1
t }Atxt} : T P T and x P Tu.

• B :“ maxTPT }bT }.

• C0 :“ maxTPT }A˚
TbT }.

• σ˚ is the smallest positive singular value of a linear map AT with T P T.

First, by the reverse triangle inequality, we may bound

} 9xt} ě σ˚rtst ´C0 (9)

for all t ě 0. When xt ‰ 0, by the Cauchy-Schwarz inequality we may bound

9rt “ ´
xxt, 9xty

rt
ď Bst. (10)

Fix an ϵ P p0, 1s, and set R :“ 4C0pσ˚ϵq´1. For each j P N, set ϵj :“ 2´jϵ and Rj :“ 2jR. For each
pair j,k P N, let Ajk denote the set

Ajk :“ tt P Rě0 : Rj ď rt ă Rj`1 and ϵk`1 ď st ă ϵku.

The union
Ť

j,kAjk “ tt : rptq ě R and st ą 0u. We now work to bound the integral

ż

tt:rtěRu

st dt “
ÿ

j,k

ż

Ajk

st dt .

When t P Ajk, we may bound σ˚rtst ě σ˚Rjϵk`1 “ C02
j`1´k. For fixed k, when j ě k` 1,

Equation (9) ensures that } 9xt} ě 3C0. We may derive the inequalities

ÿ

jěk`1

µpAjkq3C0 ď

ż

Ť

jěk`1Ajk

´} 9xt}
2 dt ď

ż 8

0

´} 9xt}
2 dt ď Vpx0q ,
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where µ denotes Lebesgue measure. Bound the sum
ř

jěk`1 µpAjkq ď Vpx0qp3C0q´2 and the
integral

ř

jěk`1

ş

Ajk
st dt ď ϵkVpx0qp3C0q´2. A similar argument yields for fixed j an upper

bound
ř

kěj

ş

Ajk
st dt ď ϵjVpx0qC´2

0 . Using these upper bounds, we compute:

ż

tt:rtěRu

st dt “
ÿ

j,k

ż

Ajk

st dt

ď
ÿ

kě0

ϵkVpx0qp3C0q´2 `
ÿ

jě0

ϵjVpx0qC´2
0

“
20

9
ϵVpx0qC´2

0 .

We may now prove that xt is bounded. By Equation (10), we have a bound

sup
tě0

rt ď R`B

ż

tt:rtěRu

st dt ď R`
20

9
ϵVpx0qC´2

0 ,

which is finite. Therefore xt is bounded.

Remark 7.4.22. In general, fast CPWA heat flows need not converge to local minima of the
potential function V . A fast CPWA heat flow may converge to a generalized saddle point of V .
However, after finding a saddle point, one may start a new fast solution from the saddle point
that immediately enters the interior of a top dimensional cell by the following lemma.

Lemma 7.4.23. Let f : X Ñ Y be a CPWA map with potential function Vpxq “ 1
2}fpxq}2. Let x0 be a

generalized critical point of V such that every CPWA heat flow xt initialized at x0 is constant. x0 is a
local minimum of V .

Proof. Without loss of generality suppose that x0 “ 0. If 0 is contained in the interior of a top-
dimensional cell T , then 0 is an OLS solution to ATx “ ´bT , and hence a local minimum of V .
Instead, suppose M is the polyhedral cell of minimal dimension whose relative interior contains
0. Let T be a top-dimensional cell such thatM Ď BT . The constrained gradient ∇V

∣∣
M

p0q is exactly
the orthogonal projection of A˚

T fp0q onto M. This quantity is independent of the choice of top-
dimensional cell T . Since there can be no non-constant sliding mode for Clarke gradient descent
starting from 0 in M, it must be that ∇V

∣∣
M

p0q “ 0. Therefore A˚
T fp0q is orthogonal to M, and

points outside of T . Therefore for any vector v P T , the directional derivative xA˚
T fp0q, vy ě 0. This

holds for every top cell, so 0 must be a local minimum of V .
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7.4.3 Piecewise affine sheaves

A C0-nonlinear network sheaf whose restriction maps are continuous piecewise affine maps has
a coboundary operator which is itself CPWA.

Definition 7.4.24. Let G “ pV,Eq be a finite network. A piecewise affine Hilbert sheaf F on G

consists of the following data.

• A finite dimensional Hilbert space Fpσq for each σ P V Y E called the stalk over σ;

• For each covering map f : v Ñ e in G, a choice of a continuous piecewise affine map
Ff : Fpvq Ñ Fpeq.

Remark 7.4.25. We may assume, without loss of generality, that all restriction maps out of a stalk
Fpvq are defined with respect to a common polyhedral decomposition Pσ.

By Lemma 7.4.4 and Corollary 7.4.5, the coboundary map δ : C0pG;Fq Ñ C1pG;Fq is itself
CPWA. The C0-nonlinear heat flow with respect to the sheaf Laplacian exactly encodes CPWA
heat flow with respect to the coboundary map δ. Under a fast heat flow selection rule, Theo-
rem 7.4.21 ensures that heat flows converge to generalized critical points.

Remark 7.4.26. Following Remark 7.4.7, piecewise affine Hilbert sheaves could potentially serve
as the foundation for a different architecture for sheaf neural networks than that of Hansen
and Gebhart [53]. By allowing the rectifiable linear unit (and projections onto polyhedral cones
more generally), the activation function may be directly incorporated into the restriction maps
themselves. Alternatively, one may consider using a smooth activation function like soft-max and
a smooth nonlinear Hilbert sheaf.
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