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Introduction
Most mathematicians are familiar with the story of the Continuum Hypothesis. In its most basic
form, the Continuum Hypothesis asserts that if X ⊆ R is an infinite set, then the cardinality of X
is either that of the natural numbers, or that of the entire continuum. That is, |X| = |N| = ℵ0 or
|X| = |R| = 2ℵ0 . This was the first non-trivial problem in cardinal arithmetic, and held the presti-
gious position as the first on the list of important open problems presented by David Hilbert at the
1900 International Congress of Mathematicians. The "resolution" of the Continuum Hypothesis
was a rare combination of fascinating and anti-climactic. Kurt Gödel showed that the Continuum
Hypothesis is consistent with ZFC set theory in 1940, and Paul Cohen showed that the negation
of the Continuum Hypothesis is consistent with ZFC in 1963. Hence the Continuum Hypothesis
became one of the first examples of a "non-contrived" statement independent of ZFC.

While this "standard story" is true, it is incomplete (as so many stories involving Gödel are).
After all, there was nearly a century of work between the development of set theory and Cohen’s
proof of independence! Many early set theorists, including Georg Cantor, believed the Contin-
uum Hypothesis was true! While all attempts to prove it were destined to fail, many fascinating
mathematical tools were developed in the interest of a proof. In this essay, we will track one of
these historic attempt to resolve the Continuum Hypothesis, sometimes dubbed the "Perfect Set
Program". In addition to beautiful math, the Perfect Set Program has a beautiful history. There
is value in learning this history! While the Perfect Set Program failed to prove the Continuum
Hypothesis, it succeeded in providing new and powerful tools for mathematicians, and in proving
a fascinating partial result: the Continuum Hypothesis is true "in practice".

1 Perfect Sets and an Approach to Resolving the Continuum
Hypothesis

We start the math with a brief refresher on Perfect sets.

Perfect Sets and their Cardinalities
Definition 1.1: Let P ⊆ R. P is "perfect" if and only if P is closed and every point of P is a limit
point.

Let’s look at a couple of examples to see the various shapes pefect sets can come in.

Examples 1.2:

1. The empty set is perfect trivially.

2. Every closed interval is perfect.

3. The Cantor set is perfect.

Going forward, while I will do my best to say "non-empty pefect set", we will never be considering
empty perfect sets. I may slip up – may God forgive me.

Perfect sets have the following important property:
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Proposition 1.3: Let P ⊆ R be non-empty and perfect. Then |P | = |R|.

Interestingly, most of the proofs of this fact that you can find online and in undergraduate mathe-
matics texts merely show that P is uncountable. Since we’re discussing the Continuum Hypothesis
though, we don’t want to take for granted that every uncountable subset of R has the same cardi-
nality as all of R! We’ll present a true proof that |P | = |R|.

Proof: If P contains a closed interval we’re done trivially, so suppose it does not. We make
the following important observation: Let p ∈ P , and a, b ∈ R \ P with a < p < b. Then P ∩ [a, b]
is non-empty and perfect.

The set P ∩[a, b] is trivially nonempty as it contains p, and trivially closed since it’s the intersection
of two closed sets. Now we check that P ∩ [a, b] has no isolated points. Take x ∈ P ∩ [a, b]. Since
a, b 6∈ P by hypothesis, we have that x ∈ P ∩ (a, b). For all ε > 0 sufficiently small, the open
interval Bε(x) := (x− ε, x+ ε) is contained in (a, b). Since x ∈ P and P is perfect, we know there
is a second point y ∈ P ∩Bε(x) with y 6= x. It follows that x is not an isolated point in P ∩ [a, b].
Thus P ∩ [a, b] has no isolated points and must be perfect.

This observation allows us to embed a Cantor set inside of P . Take two distinct points xL and xR
in P , taking care to ensure that xL and xR are not the least upper bound or greatest lower bound
of P (in the event that P is bounded above or below). We may take two disjoint closed intervals
IL 3 xL and IR 3 xR with endpoints in R \P . Set PL := P ∩ IL and PR := P ∩ IR. These sets PL
and PR are disjoint, and our observation tells us that both are non-empty and perfect. Now we
may repeat this process inside of PL and PR to construct four disjoint perfect sets PLL, PLR, PRL
and PRR. We may repeat this process inductively. By the Nested Interval Property, every infinite
sequence of Ls and Rs corresponds to a non-empty set PLRLLRR···. Our construction ensures that
no two distinct sequences of Ls and Rs correspond to the same set. Since there are |2N| = |R| such
sequences, it follows that |P | = |R|.

Remark 1.4: The Axiom of Choice is not necessary for this proof. All choice functions can be
explicitly constructed. The role of choice in the Perfect Set Program will be taken up later.

Remark 1.5: Let 2ω denote the countable product space
∏
n{0, 1}, where {0, 1} is endowed with

the discrete topology. We will refer to this space as the "Cantor Space". Notice that the Cantor
Space is homeomorphic to the Cantor set (middle thirds construction), and thus is a compact,
totally disconnected, and perfect. In the above proof, what we really did was find a continuous in-
jection f : 2ω → P which is a homeomorphism onto its image. We summarize this with a corollary:

Corollary 1.6: Let P be a non-empty perfect subset of R. Then there is a subset P ′ ⊆ P which is
homeomorphic to the Cantor Space 2ω. P ′ is perfect, compact, and totally disconnected.

Perfect Sets and the Continuum Hypothesis
We started this essay with a discussion of the Continuum Hypothesis. What do perfect sets have
to do with this? Here’s an immediate corollary to Proposition 1.3 to tie things together:

Corollary 1.7: Perfect sets satisfy the Continuum Hypothesis in the sense that if P ⊆ R is un-
countable and perfect, then |P | = |R|.

For the early set theorists, this property of perfect sets hinted at a path toward resolving the
Continuum Hypothesis. Perfect sets come in a variety of shapes. They can be continuous like
closed intervals, or totally disconnected and nowhere dense like the Cantor set. This flexibility
makes it easy to find perfect sets hiding inside of uncountable sets. Wouldn’t it be great to come
up with an approach to demonstrate the existence of a non-empty perfect subset of every uncount-
able set of reals? In fact, unless you’re a set theorist, I will hazard to guess that every uncountable
set of reals you have ever worked with contains a non-empty perfect subset. We summarize the
approach with an unreasonable historic goal:
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Unreasonable Historic Goal: Show that every uncountable subset of R contains a non-empty
perfect set. This is the so-called "Perfect Set Property" of uncountable subsets of R.

To be clear, this goal is not achievable. The independence of the Continuum Hypothesis from
ZFC ensures that we cannot prove all uncountable subsets of R have the Perfect Set Property, and
we will explicitly construct such a set later in this essay.

Ok, so the project is doomed to failure, but we may still find value in tracking this historic attempt
at resolving the Continuum Hypothesis. Early set theorists were able to show that broad classes
of sets with a given "description" have the Perfect Set Property. For example, every open subset
of R contains a closed interval, which is perfect. This was the beginning of classical "descriptive
set theory". While the specific project was futile, you might be surprised to learn just how many
sets we’re able to prove have the Perfect Set Property. While early set theorists obviously weren’t
able to prove the Continuum Hypothesis, the success of this "Perfect Set Program" was taken
as "empirical evidence" that the Continuum Hypothesis is true. As mentioned before, very few
mathematicians ever work with an uncountable subset of R that doesn’t have a non-empty perfect
subset. Hence the title of this post: the Continuum Hypothesis is true in practice. We
revise our unreasonable historic goal to a more modern, reasonable goal:

Reasonable Modern Goal: Show that every uncountable subset of R that a non-set theorist will
ever encounter in the wild has a non-empty perfect subset.

2 Closed Sets and Cantor-Bendixson Analysis
The first big result in the Perfect Set Program was at the hands of Georg Cantor and Ivar Bendix-
son, who showed that every uncountable closed set contains a non-empty perfect subset. The final
proof of this fact was recorded in a letter from Bendixson to Cantor. To get started on under-
standing this proof, we begin with the notion of the "derived set" from elementary real analysis.

Derived Sets
Definition 2.1: Let X ⊆ R. The derived set of X is X ′ := {a ∈ R : a is a limit point of X}.

Notice that X ⊆ R is closed if and only if X ′ ⊆ X. Further, X is perfect if and only if X ′ = X.
Let’s look at some examples:

Examples 2.2:

1. Let X0 := ∅. Then X ′0 = ∅′ = ∅

2. Let X1 := N. Then X ′1 = N′ = ∅

3. Let X2 := N
⋃
{n + 1

2m+1 : n,m ∈ N}. So X2 is the naturals, with a sequence of isolated
points approaching each natural number n from the right. In this case we, have that X ′2 = N.
Taking the derived set leaves N intact, but removes these sequences of isolated points we
added. These sequences themselves are removed, but they "protect" the points in N.

4. Let X3 := X2

⋃
{x+ 1

3k+1 : x ∈ X2 \N and k ∈ N}. When we moved from N to X2, we added
in a sequence of points approaching each natural number from the right. Now when we move
from X2 to X3, we’re adding a sequence of points converging to each of those new points in
X2 from the right. These new points "protect" all of the points in X2, giving us X ′3 = X2.

5. Iterating this construction, we may construct a sequence of sets Xn such that X0 is perfect,
and X ′n+1 = Xn for all n.

Cantor-Bendixson Analysis
The previous examples hint at a question: for a set X ⊆ R, does iteratively taking the derived
set always eventually stabilize to a perfect set? If so, after how many times? Will the perfect set
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be empty? Can there be infinite chains of derived sets like X 6= X ′ 6= X ′′ 6= · · · ? We will now
examine this question for closed X.

Restricting our attention to closed sets makes these questions much more approachable due to
the following lemma:

Lemma 2.3: Let X ⊆ R be closed. Then X ′ is a closed subset of X.

Proof: Since X is closed, it contains all of its limit points, making X ′ ⊆ X immediately. Now
suppose {xn} is a sequence of points in X ′ such that xn → x for some x ∈ X. x is a limit point of
X, so x ∈ X ′, making X ′ closed.

With this lemma, we may now use the ordinals and transfinite recursion to gain insight. If you
need a refresher on ordinals, don’t worry. We won’t be doing anything too crazy with them, and
they won’t come up again until the very end. We use ordinals to define the Cantor-Bendixson
Derivative and Cantor-Bendixson Rank.

Definition 2.4: Let X ⊆ R be a closed set. For any ordinal γ, the γ’th Cantor-Bendixson Derivative
of X, δγ(X), is defined by transfinite recursion as follows:

δ0(X) := X

δα+1(X) := δα(X)′ for successor ordinal α+ 1

δβ(X) :=
⋂
α<β

δα(X) for limit ordinal β

Notice that our lemma implies that δγ(X) will be closed for every ordinal γ. We next claim that
the Cantor-Bendixson derivative always stabilizes eventually.

Proposition 2.5: Let X ⊆ R be closed. Then there is an ordinal α such that δα(X) = δα+1(X).

Proof: For sake of contradiction, suppose the Cantor-Bendixson derivative never stabilizes for
X. This implies that for any ordinals α < β, we have that Xα ( Xβ . That is, we’re throwing
out at least one point from X every time we take the derived set. Let γ be an ordinal such that
|γ| 
 |X|. Then δγ(X) = ∅, as there are more than |X| many ordinals smaller than γ, and we
must have thrown out a point every step of the way! Then δγ+1(X) = ∅ = δγ(X), meaning X
stabilizes. This is a contradiction, proving the result.

Since the Cantor-Bendixson derivative must eventually stabilize at some ordinal, and the ordi-
nals are well-ordered, there must be a smallest ordinal at which we stabilize. This allows us to
define the Cantor-Bendixson Rank:

Definition 2.6: Let X be a closed subset of R. The "Cantor-Bendixson Rank" of X is the least
ordinal α such that δα(X) = δα+1(X). We will denote this by rk(X).

With rank in hand, we can start moving toward the Cantor-Bendixson Theorem.

Lemma 2.7: Let X be a closed subset of R. Then rk(X) is a finite or countable ordinal.

Proof: Recall that the topology on R has a countable basis given by open intervals with ra-
tional endpoints. Denote this basis by B. Since X and all its Cantor-Bendixson derivatives are
closed, their compliments are open and can be written as a union of the basis intervals. To this
end, for every ordinal α, take:

Bα := {I ∈ B : I ⊆ R \ δα(X)}

Notice for ordinals α � β ≤ rk(X), the inclusion δα(X) ) δβ(X) tells us that Bα ( Bβ . This gives
us a chain of proper inclusions:

B0 ( B1 ( · · · ( Brk(X)
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Since there is a member of this chain for every ordinal α ≤ rk(X), and Brk(X) ⊆ B is countable, it
follows that rk(X) must be a finite or countable ordinal.

Lemma 2.8: Let A be any subset of R. The set of isolated points of A is finite or countable.

Proof: Let a be an isolated point of A. There is an open interval I with rational endpoints
such that A ∩ I = {a}. This gives an injection from the set of isolated points of A into the set of
open intervals with rational endpoints.

We’re now ready to state and prove the first big result of the Perfect Set Program: the Cantor-
Bendixson Theorem. The proof we present here is (an approximation of) Bendixson’s original
proof. This proof was written before much of point-set topology had been developed. A more
direct proof using the "modern tools" of the early 1900s instead of ordinals will be presented later.

Theorem 2.9 (Cantor-Bendixson Theorem): Let X be a closed subset of R. There is a unique
decomposition of X into a disjoint union of a (possibly empty) perfect set and an at most count-
able set.

Proof: Set P := δrk(X)(X). P is a perfect subset of X. Notice that X \ P can be written as
the union of the all the isolated points we threw out along the way. That is:

X \ P =
⋃

α≤rk(X)

δα+1(X) \ δα(X)

Lemmas 2.7 and 2.8 tell us that rk(X) and each δα+1(X) \ δα(X) are at most countable. Thus
X \ P is at most a countable union of countable sets, which is countable. So X = P ∪ (X \ P ) is
our desired decomposition. The problem of uniqueness will be taken up later.

Consequences of the Cantor-Bendixson Theorem
We present a few immediately corollaries to the Cantor-Bendixson Theorem. The first two are
relevant to the Perfect Set Program and the Continuum Hypothesis.

Corollary 2.10: The closed sets in R have the "Perfect Set Property", meaning that every un-
countable closed X ⊆ R contains a non-empty perfect subset.

Corollary 2.11: The closed sets of R satisfy the Continuum Hypothesis. That is, if X is a closed
uncountable subset of R, then |X| = |R|.

Proof: Let X be an uncountable closed subset of R. The Cantor-Bendixson Theorem tells us
we may decompose X as X = P ∪ C, where P is perfect, C is at most countable, and P ∩ C = ∅.
Since X is uncountable and C is countable, P must be non-empty. By Proposition 1.3, this non-
empty perfect set P has the same cardinality as R. Ergo |X| = |R| .

The Cantor-Bendixson Theorem has an additional bizarre corollary. It won’t be important go-
ing forward, but it’s interesting.

Corollary 2.12: Assume the negation of the Continuum Hypothesis. Let A ⊆ R be a Lebesgue-
measurable set with an intermediate cardinality ℵ0 < |A| < 2ℵ0 . Then m(A) = 0.

Proof: Suppose m(A) > 0. Since A is measurable, we may approximate it from the inside be
closed sets. Take any closed set C ⊆ A such that m(C) > 0. Then C is uncountable, and hence
has cardinality of the continuum by Corollary 2.11. This contradicts the fact that |A| < |R|.
Therefore m(A) = 0.

Remark 2.13: This result is about Lebesgue measure – NOT Lebesgue outer measure. We need to
assume the measurability of the set of intermediate cardinality for Corollary 2.12 to apply. There
is no general similar result for outer measure. Whether or not there can be a set A ⊆ R with
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ℵ0 < |A| < 2ℵ0 and m∗(A) > 0 depends on the specific model of ZFC we’re using. This is taken
up in much more detail in chapter 26 of Thomas Jech’s textbook on Set Theory.

3 Unions, Intersections, and Polish Spaces:
Let’s take inventory. So far, we’ve used perfect sets to show that open sets and closed sets in R
satisfy the Continuum Hypothesis. For open sets, this proof was trivial. For closed sets, we had to
work a bit harder and introduce the Cantor-Bendixson derivative. We’re still very far away from
my claim that you’ve never seen a set without the Perfect Set Property! Let’s push further.

Recall that Fσ sets are a class of sets slightly more general than both open and closed sets.
A set X ⊆ R is an Fσ set if and only if X may be written as a countable union of closed sets. It
is clear that every open set and closed set is an Fσ set.

Theorem 3.1: Fσ sets in R have the Perfect Set Property. That is, if X ⊆ R is an uncount-
able Fσ set, then there is a non-empty perfect subset P ⊆ X.

Proof: Since X is Fσ, we may write X =
⋃
n Cn where each Cn is closed. Since X is uncountable,

at least one of the Cn must be uncountable. Then our previous work with the Cantor-Bendixson
Theorem gives us that that there is a non-empty perfect subset P ⊆ Cn ⊆ X.

Corollary 3.2: Fσ sets in R satisfy the Continuum Hypothesis.

Ok, so we’ve got the Continuum Hypothesis for countable unions of closed sets. What about
countable intersections of open sets? These are the so-called Gδ sets, which generalize open and
closed sets in a slightly different way than Fσ sets.

William Young, best known for Young’s Inequality, managed to prove this result in 1903. No-
tice that it was easy to show that both open sets and Fσ sets satisfy the Continuum Hypothesis.
Meanwhile, it was pretty tricky to show that closed sets satisfy the Continuum Hypothesis. This
trend will continue in that Gδ sets will be tricky as well. Thankfully, we’ve already done most of
the conceptual work. We’ll just need to generalize the Cantor-Bendixson Theorem slightly.

Polish Spaces
Definition 3.3: Let X be a topological space. X is a "Polish space"1 if and only if X is separable
and metrizable with a complete metric.

Notice that R with its standard topology is a Polish space. In fact, if we "forget" the order
properties and the distance function of R, but remember the topology, we’re left with just a Polish
space. Each Rn with the standard topology is Polish as well. Further, we may still talk about
derived sets and perfect sets inside Polish spaces. This hints that Polish spaces behave a lot like
R. This is true! As a first example, consider the following lemma:

Lemma 3.4: Let X be a Polish space, and let P ⊆ X be non-empty and perfect. Then |P | =
2ℵ0 = |R|.

The proof of this lemma goes exactly as it did in the case of the reals. We again construct a
continuous injection of the Cantor Space 2ω into P which is homeomorphic onto its image. We
just avoid reference to the order properties of R. We also give a Polish-space analogue to Corollary
1.6.

Corollary 3.5: Let P be a non-empty perfect subset of a Polish space X. Then there is a subset
P ′ ⊆ P which is homeomorphic to the Cantor Space 2ω. P ′ is perfect, compact, and totally dis-
connected.

1According to Wikipedia, Polish spaces got their name because they were extensively studied by Polish mathe-
maticians, including Tarski. I’m not sure how I feel about this term. Maybe we should make a new term for this?
I’m leaving it as "Polish space" for now, but I may change this sometime in the future.
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These similarities to R hint that there might be generalization of the Cantor-Bendixson Theo-
rem. Indeed there is!

Theorem 3.6 (Cantor-Bendixson for Polish Spaces): Let C be a closed subset of a polish space X.
There is a unique decomposition of C into a disjoint union of a (possibly empty) perfect set P and
an at most countable set S

Recall that our proof of the Cantor-Bendixson Theorem in the last section was the historic proof.
Bendixson’s argument was from a time before we had the tools of point-set topology. There is a
cleaner, more modern way to prove it that generalizes to an arbitrary Polish space. We present
that proof here:

Proof: Let X be a Polish space, and C ⊆ X be closed. Now take:

P := {x ∈ C : for all open U 3 x, U ∩ C is uncountable}

Let S := C \ P . That is, s ∈ S if and only if there is a neighborhood U 3 s such that U ∩ C is
countable.

First, we show that P is perfect. If P is empty, we’re done. Suppose P 6= ∅. It is obvious
from the definition that every point of P is a limit point of P . Meanwhile, suppose that x ∈ X is
a limit point of P . Since C is closed, we know that x ∈ C. Let U 3 x be open. Since x is a limit
point of P , there is a point p ∈ P ∩U . Hence, there are uncountably many points of P in U . Since
U was an arbitrary open set containing x, we have that x ∈ P and P closed.

Next we show that S is countable. X is metrizable and separable, so X is second countable
as well. Thus we have a countable basis for the topology on X. Around each s ∈ S, we may take a
not-necessarily distinct basis neighborhood Us such that Us ∩C is countable. Then

⋃
s∈S(Us ∩C)

is a countable union of countable sets. We’re working in ZFC, so this set is countable. Further,
S ⊆

⋃
s∈S(Us ∩ C), making S countable as well.

This proves that C = P ∪ S is decomposition of closed C into the disjoint union of a perfect
set P and a closed set S.

To prove this decomposition is unique (missing in the last proof), suppose that C = P ′ ∪ S′
is another such decomposition. Let x ∈ P ′. Let U 3 x be an open set, and take another open
V 3 x such that V ⊆ U . I claim that V ∩ P ′ is perfect. The set is clearly closed, so we merely
need to show that every point is a limit point. Let y ∈ V ∩ P ′. Then for any neighborhood N 3 y,
we have that N ∩ V ∩ P ′ is non-empty. Take z ∈ N ∩ V ∩ P ′. Then z is a limit point of P ′. Since
N ∩ V is open, it follows that there is a second point z′ ∈ N ∩ V ∩ P ′ with z 6= z′. y is a limit
point of V ∩ P ′. Hence V ∩ P ′ is perfect, and has cardinality 2ℵ0 . So U has cardinality 2ℵ0 as well.
Since U was an arbitrary neighborhood of x, it follows that x ∈ P . This implies that P ′ ⊆ P .

On the other hand, suppose that x ∈ S′. since P ′ is closed, we may find a neighborhood U 3 y
such that U ∩ P ′ = ∅. Hence U ∩C ⊆ S′, so U ∩C is countable. Hence s′ ∈ S, making S′ ⊆ S. It
follows that P = P ′ and S = S′, making the decomposition unique.

Remark 3.7: The uniqueness result here fills in the missing part of the proof of the Cantor-
Bendixson Theorem in R.

Corollary 3.8: Every uncountable Polish space has the cardinality of the continuum.

Proof: Let X be an uncountable Polish space. Then X is a closed subset of itself, so we may
write X = P ∪ C, where P is perfect and C is at most countable. Hence |X| = 2ℵ0 = |R|.

Before we get back to the story, we introduce a utility lemma. We give it this name because
it will finish several proofs for us along the way.
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Lemma 3.9 (Utility lemma): Let 2ω be the Cantor Space, X be a Polish space, and f : 2ω → X
be a continuous injection. Then f is a homeomorphism onto its image.

Proof: Let P := f(2ω) be the image of f equipped with the subspace topology from X. We
wish to show that f : 2ω → P is a homeomorphism. All we must show is that f−1 : P → 2ω is
continuous. It will suffice to show that f maps closed sets to closed sets. Take a closed C ⊆ 2ω.
Since C is closed and 2ω is compact, it follows that C is compact. Since f is continuous, we get that
f(C) ⊆ P is compact. Notice that P is Hausdorff, since P is equipped with the subspace topology
from the Polish topology on X. Hence f(C) ⊆ P is closed. Therefore f is a homeomorphism onto
its image.

Gδ Sets In Polish Spaces Are Polish Spaces
Recall we were working toward showing that Gδ sets in R have the Perfect Set Property. The last
missing step is Alexandrov’s Theorem:

Theorem 3.10 (Alexandrov’s Theorem): Let X be a Polish space. If A is a Gδ subset of X,
then A equipped with the subspace topology is a Polish space.

Remark 3.11: The converse is also true.

The proof of Alexandrov’s Theorem is pretty boring metric space topology work. A full proof
is included here for good measure, but I would personally recommend skipping ahead to Theorem
3.13. We start the proof with a lemma:

Lemma 3.12: Let X be a Polish space. Let U ⊆ X be open. Then U equipped with the subspace
topology is Polish.

Proof: Since X is separable, it immediately follows that U is separable in the subspace topol-
ogy. We only need to show that U may be metrized by a complete metric. Let d be a complete
metric that metrizes the topology on X. An immediate issue is that Cauchy sequences in U with
respect to d need not converge to a point in U . Hence we will need to build a new metric.

First, notice that we may, without loss of generality, assume that d(x, y) < 1 for all x, y ∈ X.
If not, replace d with the new metric d(x,y)

1+d(x,y) . This new metric is bounded above by 1 and is
compatible with the same topology on X.

Consider the map d′ : U × U → R≥0 given by:

d′(x, y) = d(x, y) +

∣∣∣∣ 1

d(x,X \ U)
− 1

d(y,X \ U)

∣∣∣∣
Since X \ U is closed, this map is well defined for x, y ∈ U . I claim that d′ is a metric on U .
Most properties are immediately apparent, but we will explicitly check the triangle inequality. Let
x, y, z ∈ U . Then:

d′(x, z) = d(x, z) +

∣∣∣∣ 1

d(x,X \ U)
− 1

d(z,X \ U)

∣∣∣∣
≤ d(x, y) + d(y, z) +

∣∣∣∣ 1

d(x,X \ U)
− 1

d(y,X \ U)

∣∣∣∣+

∣∣∣∣ 1

d(y,X \ U)
− 1

d(y,X \ U)

∣∣∣∣
= d′(x, y) + d′(y, z)

To complete the proof, we must verify that this metric d′ is complete and compatible with the
subspace topology on U .

d′ is a complete metric: Suppose that {xn}n is a Cauchy sequence in U with respect to d′.
Since d′(xn, xm) ≥ d(xn, xm), the sequence is Cauchy with respect to the complete metric d as
well. Hence there is x ∈ X such that xn → x. We must show that x ∈ U . Notice that since
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d′(xn, xm)→ 0 and d(xn, xm)→ 0 as m,n→ 0, it follows from the definition of d′ that:∣∣∣∣ 1

d(xn, X \ U)
− 1

d(xm, X \ U)

∣∣∣∣→ 0

as m,n → ∞. Hence the sequence 1
d(xn,X\U) is Cauchy in R, and thus converges to some r ∈ R.

Since d < 1, we know that r > 0. By the reverse triangle inequality, we may bound:

d(x,X \ U) ≥ |d(x, xn)− d(xn, X \ U)|

Taking the limit as n→∞, we get:

d(x,X \ U) ≥ 1

r
> 0

Hence x ∈ U , proving that d′ is complete.

d′ is compatible with the subspace topology on U : It suffice to check that if x ∈ U and {xn}n
is a sequence of points in U , then xn → x with respect to d′ if and only if xn → x with respect
to d. First suppose that xn

d′−→ x. Since d(xn, x) ≤ d′(xn, x), it follows that xn
d−→ x. Conversely,

suppose xn
d−→ x. By continuity, we know that d(xn, X \U)

d−→ d(x,X \U). Since x and each xn is
in U , we know that every term in this sequence and the limit are non-zero. Hence we may invert
to get:

1

d(xn, X \ U)
−→ 1

d(x,X \ U)

It follows that:
d′(xn, x) = d(xn, x) +

∣∣∣∣ 1

d(xn, X \ U)
− 1

d(x,X \ U)

∣∣∣∣ −→ 0

Hence xn
d′−→ x. This completes the proof.

With this lemma, we may prove Alexandrov’s Theorem.

Proof of Alexandrov’s Theorem: Let A be a Gδ set contained in a Polish space X. As before,
since A is a subspace of a separable space, A is separable. Since A is Gδ, we may write A =

⋂
n Un,

where Un ⊆ X is open and Un+1 ⊆ Un for all n ∈ N. By the lemma, each Un is a Polish space, and
hence is metrizable by a complete metric dn. We may again, without loss of generality, assume
that each dn is bounded above by 1. We define a new metric d : X ×X → R≥0 by:

d(x, y) =

∞∑
n=1

2−ndn(x, y)

Since each dn is bounded above by 1, this sum converges. It is also immediately clear that d is
a metric. First, I claim that d is a complete metric. Let {xk}k be a Cauchy sequence in A with
respect to d. It immediately follows that {xk}k is a Cauchy sequence with respect to dn as well
for all n. So xk has a limit x in every Un. The limit must be the same for each n since each dn is
compatible with the the subspace topology on Un. Hence x ∈ A as well, so d is a complete metric.
Finally, let {xk}k be a sequence in A, and let a ∈ A. It is clear that xk

d−→ a if and only if xk
dn−→ a

for all n. So d is compatible with the subspace topology on A.

Cantor-Bendixson Analysis on Gδ Sets
With Alexandrov’s theorem, we may extend Cantor-Bendixson analysis to Gδ sets.

Theorem 3.13: Gδ sets in a Polish space X have the Perfect Set Property.

Proof: Let G be an uncountable Gδ set in X. Since X is a Polish space the Alexandrov Theorem
tells us that G equipped with the subspace topology is a Polish space. Since G is an uncountable
closed subset of itself as a Polish space, the Cantor-Bendixson Theorem gives us that there is a
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perfect set P ⊆ G with |P | = 2ℵ0 .

Notice this set P is perfect with respect to the subspace topology on G. This does not mean
that P is perfect with respect to the topology on G. For example, if we look at (0, 1) as a Gδ set
in R, our perfect P would be all of (0, 1). We still have more work to do!

Since P is perfect in the Polish topology on G, there is a continuous embedding of the Cantor
Space into P that is homeomorphic onto its image. Take f : 2ω → P to be this embedding.
Since the Polish topology on G is finer than the Polish topology on X, f is a continuous injection
of 2ω into X. By our Utility lemma (3.9), f is homeomorphic onto its image. Call this image
P ′ := f(2ω). It follows that P ′ is a perfect subset of X with respect to the original topology on
X.

Corollary 3.14: Gδ sets in R have the Perfect Set Property, and thus satisfy the Continuum
Hypothesis.

4 Borel Sets
Now we’re up to Fσ and Gδ sets satisfying the Continuum Hypothesis. What about countable
intersections of Fσ sets and countable unions of Gδ sets? What about countable unions and in-
tersections of these sets? If we carry these constructions out ad infinitum, we will arrive at the
"Borel σ-Algebra". This is the smallest collection of sets containing the open sets that is closed
under the operations of countable union, countable intersection, and complement. Do Borel sets
have the Perfect Set Property?

What makes this problem difficult, roughly, is that the Perfect Set Property doesn’t play nicely
with complements. While one can make statements about countable unions and intersections of
sets with perfect subsets, it is very difficult to make statements about whether the complement
of a set containing a non-empty perfect set also contains a non-empty perfect set. This makes it
difficult to induct through the Borel hierarchy and arrive at the result for all Borel sets.

Indeed the Borel sets do have the Perfect Set Property though! This result was proved by both
Alexandrov and Hausdorff in 1916, taking advantage of a different description of the Borel sets.
Interestingly, the original proof by Alexandrov is extremely difficult to track down. I could only
find it in French on a shady website in a file format specifically for Kindle e-readers. In the interest
of preserving history, I risked the malware and have translated the entire paper to English. I am
not sure if I would be in violation of copyright law to post the translation online, but feel free to
reach out to me if you would like a copy. Sadly though, even in English I cannot really follow the
argument of the paper! Bear in mind that the Russian Alexandrov’s writing in French, has been
translated to English by a person who took exactly two years of French classes in high school. It
is very likely that something got lost in translation along the way.

While the historic proof may be interesting, we will provide a different proof here for Borel sets
in arbitrary Polish spaces. As in the last section on Gδ-sets, I would recommend simply reading
the statements of theorems and propositions, but skipping over the proofs unless you are very
interested.

Refining Topologies and Borel Sets
Our work begins with an exploration of the various Polish topologies we may put on a space. It
turns out, we may refine a given Polish topology in a way that preserves the Borel sets, but gives
a specific set a nicer description with regard to the Topology. That is, we may push a set down
the Borel hierarchy. We start with a lemma:

Lemma 4.1: Let τ be a Polish topology on a set X. Let C ⊆ X be closed with respect to τ .
Let τ ′ be the topology generated by τ ∪ {C}. Then (X, τ ′) is also Polish, C is clopen with respect
to τ ′, and τ ′ has the same Borel sets as τ .
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Proof: First, it is immediately clear that C is clopen in τ ′.

Next, Let τC and τX\C denote the subspace topologies of τ on C and X \ C respectively. Since
C is closed with respect to τ , τX\C is exactly the open sets of τ contained in X \ C. Notice that
U ∈ τ ′ if and only if both U ∩ (X \ C) ∈ τX\C and U ∩ C is open in τC . This characterization
makes it clear that (X, τ ′) is separable because τ is.

Since C and X \ C are closed and open respectively in the polish space (X, τ), we know that
(X \ C, τX\C) and (C, τC) are both Polish spaces. Hence, take dC and dX\C to be complete met-
rics compatible with the topologies τC and τX\C respectively. Without loss of generality, take dC
and dX\C to be bounded above by 1. Take d to be a new metric on X by:

d(x, y) =


dC(x, y) if x, y ∈ C
dX\C(x, y) if x, y ∈ X \ C
2 else

Now we check that d is a complete metric on X. In particular, if {xn}n is a Cauchy sequence in X
with respect to d, then it follows that {xn}n is eventually always inside C or X \C. If the sequence
is eventually inside C, then d(xn, xm) = dC(xn, xm) for all n,m sufficiently large. Since dC is a
complete metric on C, we get that xn converges. A similar argument holds in X \C. Hence d is a
complete metric.

Now we show that the metric d is compatible with the topology τ ′. First let ε ∈ (0, 1), x ∈ X,
and Bε(x) be the open ε-ball centered at x with respect to d. Bε(x) must be fully contained
in C or X \ C. Suppose it is inside C. Then d = dC , and hence is compatible with the sub-
space topology on C. We may take a U open in τ such that U ∩ C ⊆ Bε(x). Notice U ∩ C is
open in τ ′. A similar argument holds when x ∈ X \ C. We have just proved that τ ′ is no more
course than metric induced by d. Conversely Let U ∈ τ ′. Take x ∈ U . Suppose x ∈ C. Then
U ∩ C is open in τC . Since dC is compatible with the topology τC , we may take an ε > 0 such
that the ε-ball with respect to dC is contained in U ∩ C. But this is also the ε-ball with respect
to d. A similar argument again holds if x ∈ X\C. Hence d is compatible with the topology τ ′ onX.

At this point we have shown that (X, τ ′) is a Polish space in which C is clopen. We still must
show that τ ′ has the same Borel sets as τ . It suffice to show that every open set in τ is a Borel
set in τ ′ and vice-versa. Since τ ′ is a finer topology than τ , every open set in τ is open (and hence
Borel) in τ ′. Take U open in τ ′. Then write U = (U ∩ (X \ C)) ∪ (U ∩ C). Since U is open in τ ′,
we know that U ∩ (X \C) is open in τX\C , and U ∩C is open in τC . Hence we may take open sets
V1 and V2 in τ such that U ∩ (X \ C) = V1 and U ∩ C = V2 ∩ C. So U = V1 ∪ (V2 ∩ C), which is
clearly Borel in τ . Hence τ and τ ′ have the same Borel sets.

We may extend this result from closed sets to Borel sets.

Theorem 4.2: Let τ be a Polish topology on a set X, and let B ⊆ X be Borel with respect
to τ . There is a finer topology τB on X such that τ and τB have the same Borel sets, and B is
clopen in τB .

Proof: Sadly, we won’t just be able to add B as an open set this time. We will have to be
more subtle. Take A to be the collection of all sets with the following property: A is in A if and
only if there is a finer topology τA ⊇ τ such that τA has the same Borel sets as τ and A is clopen
with respect to τA.

First, notice that every A ∈ A must be a Borel set with respect to τ . In particular, A is open in
τA, and hence Borel with respect to τA. Since τA has the same Borel sets as τ , A must be Borel
with respect to τ .

Now we will show that A contains all the Borel sets. To prove this, it will suffice to show that A
is a σ-algebra containing the open sets of τ .

To see that A contains the open sets, let U be open in τ . Then lemma 4.1 ensures that there
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is a finer topology τ ′ with the same Borel sets such that the closed set X \ U is clopen in τ ′. So
U has an open complement in τ ′, making U closed. Hence U ∈ A.

To show that A is a σ-algebra, it will suffice to check that it is closed under complements and
countable unions.

Complements: Let A ∈ A. Then there is a finer topology τA with the same Borel sets as τ
in which A is clopen. Then X \A is clopen in τA as well, making X \A a member of A.

Countable Unions: Let {An}n∈N be a countable family of sets in A. For each n, we may take
a τn such that An is clopen in τn, τn is finer than τ , and has the same Borel sets. Take τ∞ to be
the topology generated by the countable union

⋃
n τn. We check that this is a Polish topology on

X with the same Borel sets as τ .

To see that τ∞ is Polish, we observe that the countable diagonal map ∆ : (X, τ∞)→
∏
n∈N (X, τn)

sending x 7→ (x, x, · · · ) is a homeomorphism of (X, τ∞) onto its image. Since a countable products
preserve seperability and complete-metrizability, this product space

∏
n(X, τn) is Polish. Consider

a point z = (z1, z2, · · · ) in the complement of the image ∆(X). There must be i < j such that
zi 6= zj . Since Polish spaces are Hausdorff, we may take disjoint open sets U, V in τ such that
zi ∈ U and zj ∈ V . Since each τn is a refinement of τ , it follows that U is open in τi and V is open
in τj . Hence we may take an open set in

∏
n(X, τn) by:

W := X × · · · ×X × U ×X × · · · ×X × V ×X × · · ·

where the U and V are in the ith and jth places respectively. Since U and V are disjoint, it is clear
that W is completely contained in the complement of ∆(X). Hence ∆(X) is closed. Since closed
subsets of Polish spaces are themselves Polish in the subspace topology, it follows that ∆(X) is
Polish. Hence, τ∞ is a Polish topology on X.

Now we check that τ∞ has the same Borel sets as τ . Since τ∞ is a finer topology than τ , we
know that the Borel sets of τ are contained in the Borel sets of τ∞. On the other hand, it will
suffice to check that every open set in τ∞ is Borel in τ . Suppose that U is open in τ∞. For each n,
we may take a countable basis {V nj }j for the topology τn. Each of these V nj are Borel with respect
to τ , and {V nj }n,j forms a sub-basis for the topology τ∞. Hence, we may write our open U ∈ τ∞
as a countable union of finite intersections of these {V nj }n,j , making U is Borel in τ . Thus τ∞ has
the same Borel sets as τ .

At this point, we have that τ∞ is a Polish topology on X with the same Borel sets as τ . Since⋃
nAn is open in τ∞, its complement is closed. Applying our lemma to the compliment gives us a

finer Polish topology τ ′ ⊇ τ∞ in which
⋃
nAn is clopen, with the same Borel sets as τ∞, and thus

the same Borel sets as τ . Therefore A is closed under countable unions.

Thus we have shown that A is exactly the Borel sets of τ , completing the proof.

Cantor-Bendixson Analysis on Borel Sets
The finer topology given by Theorem 4.2 allows us to apply the Cantor-Bendixson Theorem to
Borel sets in Polish spaces. This approach will allow us to continue the Perfect Set Program. We
present the following Corollary:

Corollary 4.3: Borel sets in Polish spaces have the Perfect Set Property.

Proof: Let B be an uncountable Borel set in a Polish space (X, τ). By the theorem, there is
a finer topology τ ′ such that (X, τ ′) is Polish, and B is clopen with respect to τ ′. There is an em-
bedding f : 2ω → B homeomorphic onto its image with respect to the subspace topology of τ ′ on
B. Then f is a continuous injection of 2ω into (X, τ). Our utility lemma (3.9) again gives us that
f is a homeomorphic embedding of 2ω into (X, τ). Hence B contians a non-empty perfect subset.

Corollary 4.4: Borel sets in R have the Perfect Set Property, and thus satisfy the Continuum
Hypothesis.
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5 The Analytic Sets
While every mathematicians comes across the Borel sets at some point, relatively few come across
the analytic sets. These sets hold a fun place at the center of one of the biggest "incorrect published
proofs" by a prominent mathematician. We start with a definition:

Definition 5.1: Let A ⊆ R. A is an "analytic set" if and only if there is a Borel set B ⊆ R × R
such that A = πB, where π is the first coordinate projection map.

In 1905, Henri Lebesgue published a paper (https://eudml.org/doc/234955) with the following
claim (bottom of page 191): If B ⊆ R2 is Borel in the plane, then its image under the first coor-
dinate projection is Borel as well. This was, in effect, asserting that the analytic sets in R are the
same as the Borel sets. It’s clear that every Borel set B ⊆ R is analytic (simply take the projection
of B × R), but it’s not obvious that every analytic set is Borel. On its face, this claim sounds
possible though. After all, the projection of an open set is open, and it is clear that projection
maps commute with countable unions. It seems reasonable that everything should work out on the
σ-algebra generated by the open sets as well. We may recognize a problem in that projection does
not commute with countable intersections, but this doesn’t necessarily mean that the projection
of a countable intersection of Borel sets in R2 isn’t Borel in R. Thus, the existence of an analytic-
but-not-Borel set isn’t obvious either.

This unjustified claim in Lebesgue’s paper was discovered and fleshed out by the Russian math-
ematician Mikhail Suslin, who was able to demonstrate that the Borel sets and analytic sets are
not the same. Finding a set which is analytic but not Borel is tough. The following example is
due to Luzin, Suslin’s advisor at Moscow State University. Let x ∈ R be irrational. Then x has a
unique continued fraction expansion:

x = a0 +
1

a1 + 1
a2+

1
···

Where each an ∈ Z, and an > 0 for every n > 0. Identify each real number with its corresponding
sequence of integers. Let A be the set of all irrational numbers such that the corresponding se-
quence (a0, a1, a2, · · · ) has an infinite subsequence (an1

, an2
, an3

, · · · ) satisfying anj | anj+1
for all

j. A is analytic, but not Borel.

We start our exposition by extending our definitions to arbitrary Polish spaces.

Definition 5.2: Let X be a Polish space, and A ⊆ X. We say that A is "analytic" if and only
if there is a Polish space Y and a Borel set B ⊆ X × Y such that A = πB, where π is the first
coordinate projection.

Remark 5.3: Definitions 5.2 for analytic sets in Polish spaces looks different than than defini-
tion 5.1 for an analytic set in R. In particular, it is not clear that we may assume the arbitrary
Polish space Y in definition 5.2 can be taken to be R. Indeed though, we may always pick Y to
the another copy of the Polish space X. Both of these definitions of "analytic" are equivalent,
and are given in different books. Proving these are equivalent is quite challenging, requiring use
of the Borel Isomorphism Theorem–a fundamental theorem of measure theory lives at the heart of
probability and stochastic processes. A lengthy proof and discussion of why these definitions are
equivalent is included in the appendix. Perhaps surprisingly, we will need both of these definitions
and other equivalent characterizations to proceed.

Equivalent Characterizations of Analytic Sets
We start with two new and useful characterizations of analytic sets:

Theorem 5.4: Let A be a subset of a Polish space X. The following are equivalent:

1. A is analytic.
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2. A is the continuous image of a Borel set in a Polish space Y .

3. A is empty or the continuous image of the "Baire Space" N , whose points are infinite se-
quences in N endowed with the product topology on countably many copies of N as a discrete
space.

Proof:
1 =⇒ 2: Let A ⊆ X be analytic. Then there is a Polish space Y and a Borel set B ⊆ X × Y
such that A = πB. Since X × Y is a Polish space and π : X × Y → X is continuous, we see that
A is the continuous image of a Borel set in a Polish space.

2 =⇒ 3: Suppose A 6= ∅. Let A = f(B) where f : Y → X is continuous, Y is Polish, and
B ⊆ Y is Borel. By composing maps, it will suffice to show that there is a continuous surjection
g : N → B. Recall that by Theorem 4.2, we may refining the topology on Y in such a way that
B becomes clopen in Y . Thus, we may view B itself as a Polish subspace of Y by Alexandrov’s
Theorem (3.10). Since this topology on Y is finer than the original topology, f is still continu-
ous. Hence it will suffice to show that if Z is a Polish space, we may find a continuous surjection
g : N → Z.

To show this result, let Seq denote the set of all finite sequences of natural numbers, and let
_ denote concatination of sequences. Let Z be a Polish space with complete metric d such that
d ≤ 1. Let D ⊆ Z be a countable dense subset. We inductively define a collection of open balls
{Cs : s ∈ S} as follows. Let C∅ := Z. Now suppose we know Cs for some s ∈ Seq. Let {xk}k∈N
is an enumeration of Cs ∩D Given a ball Cs, take Cs_k to be the open ball centered at xk with
radius min{length(s _ k)−1, sup{r > 0 : B(xk, r) ⊆ Cs}}, where B(xk, r) denotes the open ball
centered at xk with radius r.

We observe that diam(Cs) ≤ 1
length(s) , that Cs =

⋃
k Cs_k, and that if s is a prefix of t in S

(denoted s ≤ t), then center(Ct) ∈ Cs.

Now we define our map g : N → Z. For a = (a1, a2, a3, · · · ) in N , we take the value:

f(a) =
⋂
s≤a

Cs

This intersection is taken over all prefixes of a = (a1, a2, a3, · · · ). By our construction, it is clear
this map is well defined, continuous, and surjective. This proves the result.

3 =⇒ 1: If A = ∅, we’re done trivially. Suppose A = f(N ) where f is continuous. Consider the
graph of f (with the coordinates reversed), given by:

Γ(f) := {(x, y) ∈ X ×N : x = f(y)}

It is clear that πΓ(f) = A and Γ(f) is closed, so it will suffice to show that N is a Polish space.
To see this is true, consider the map φ : N → [0, 1] \Q given by:

φ(a1, a2, a3, · · · ) :=
1

(a1 + 1) + 1
(a2+1)+ 1

(a3+1)+···

Since such continued fraction representations are unique, we see that φ is a bijection. When view-
ing [0, 1] \Q as a subspace of [0, 1], it is easy to see that φ is a homeomorphism. Finally, recognize
that if we take {qn}n to be an enumeration of the rationals in the interval [0, 1], we may write
[0, 1]\Q =

⋂
n[0, 1]\{qn}. This shows that [0, 1]\Q is a Gδ subset of the Polish space [0, 1]. Hence

[0, 1] \Q is a Polish space with the subspace topology, showing N is a Polish space.

Remark 5.5: This characterization reveals that the Borel sets are not closed under continuous
images.

Topology to Topiary: the Basics of Trees
Our next goal will be to prove that analytic sets have the Perfect Set Property. The language of
trees will be useful for this argument.
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Definition 5.6: Let (T,<) be a partially ordered set. (T,<) is a "tree" if and only if the set
of predecessors {y ∈ T : y < x} is well ordered. Given a set A, a "tree on A" is a collection of
finite-length tuples T ⊆ A<ω that is closed under initial segments.

Notation 5.7: We introduce a little necessary notation. If t ∈ An and s ∈ Am, then we write
t � s if t is a prefix (initial segment) of s. Hence, a tree on A is just a collection T ⊆ A<ω with
the property that if s ∈ T and t � s, then t ∈ T . Further, if T is a tree on A, we use [T ] to denote
the collection of infinite paths through T . That is, [T ] = {p ∈ Aω : t ∈ T for all t � p}.

We make some elementary observations about trees. We will be primarily concerned about trees
on N:

Proposition 5.8:

1. A tree T on N is a subseteq of Seq, and [T ] is a subset of the Baire Space N .

2. If T1 and T2 are trees on N, the intersection T1 ∩ T2 is a tree on N.

3. If T is a tree on N and s ∈ Seq, then we may build a new tree on N by taking only points
of T which are on branches that pass through s. That is, we get a tree Ts := {t ∈ T : t �
s or s � t}

4. F is a closed set in the Baire Space N if and only if there is a tree T on N such that F = [T ].

5. Let T be a tree on N. Call t ∈ T a "leaf" iff there is no s ∈ T such that t ≺ s. T has no
leaves if and only if for every t ∈ T there is an infinite path p ∈ [T ] such that t ≺ p.

Proof:

1. If T is a tree on N, then T ⊆ N<ω. Recall that Seq is just another name for finite sequences
of natural numbers. So T ⊆ Seq. Further if p is an infinite path through T , then p is an
infinite sequence of natural numbers in Nω = N .

2. If T1 and T2 are trees on N, then T1, T2 ⊆ Seq. Hence T1 ∩ T2 ⊆ Seq. Further suppose that
s ∈ T1 ∩ T2, and t � s. Then since T1 and T2 are trees, t ∈ T1 and t ∈ T2. It follows that
t ∈ T1 ∩ T2 making T1 ∩ T2 a tree.

3. We may identify Ts = T ∩ {t ∈ Seq : t � s or s � t}. The latter set in this intersection is
clearly a tree, so the result follows from part 2.

4. Suppose F ⊆ N is closed. Set TF := {s ∈ Seq : s � f for some f ∈ F}. It is clear that
TF is a tree and F ⊆ [TF ]. Suppose that p ∈ [TF ]. Let pn ∈ Seq denote the initial segment
of p given by the first n points in the sequence. For each pn, we may take an fn ∈ F such
that pn ≺ fn. For m,n ≥ k, we know that the sequences fm and fn must agree on at
least the first k places. Hence we see that fn is a Cauchy sequence. Since N is complete, it
follows that fn → f for some f ∈ N . Since F is closed, it follows that f ∈ F . Hence [TF ] = F .

Conversely suppose that F = [T ] for some tree T on N . If [T ] = ∅ we’re done trivially.
So suppose [T ] is non-empty. Let f ∈ N be a point such that f 6∈ [T ]. Let fn ∈ Seq denote
the initial segment of f given by taking the first n points in the sequence. Since f 6∈ [T ],
there is an n such that fn 6∈ T . Let U := {g ∈ N : fn ≺ g}. It is clear that U is open in N
and f ∈ U . Further, since T is a tree it is easily seen that [T ]∩U = ∅. Thus the complement
of [T ] is open, making [T ] closed in N .

5. Let T be a tree on N. Suppose that T has no leaves. Then for t ∈ T , set p0 = t and for every
n, take pn ∈ T such that pn ≺ pn+1. Since T has no leaves, such a sequence exists. Further
it is clear that there is a p ∈ N such that pn ≺ p for each n. Hence there is an infinite path
p such that t ≺ p.

Conversely, suppose that T has a leaf. Let ` be a leaf of T . Then there is no t ∈ T
such that ` � t. Hence there can be no p ∈ [T ] such that t ≺ p.
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Cantor-Bendixson Analysis on Analtyic Sets
Theorem 5.9: The analytic sets in Polish spaces satisfy the Perfect Set Property.

To prove this theorem, we copy our original approach for closed sets. In particular, we must
define the Cantor-Bendixson derivative and rank for analytic sets.

Construction 5.10: Let A be an analytic set in a Polish space X. By Theorem 5.4, we know
that A is the continuous image of the Baire Space N := NN equipped with the product topology,
viewing N as a discrete topological space. Let f be a continuous function such that f(N ) = A.

Let T be a tree on N. T is a subset of Seq and every infinite path through T is a point in
the Baire Space N . For each s ∈ Seq, we take the tree:

Ts := {t ∈ T : t � s or s � t}

That is, we trim all branches that don’t pass through s. Using this new tree, we may define our
new Cantor-Bendixson Derivative. Take:

T ′ := {s ∈ T : f([Ts]) is uncountable }

Now we use ordinal recursion to define:

T (0) := T

T (α+1) := (T (α))′

T (β) :=
⋂
α<β

T (α) if β is a limit ordinal

As before, this process must stabilize eventually by a basic cardinality argument. We call the least
ordinal α such that T (α) = T (α+1) the "Cantor-Bendixson Rank" of A.

Now we must prove the same basic properties as before for our new Cantor-Bendixson construc-
tion. We start with a lemma:

Lemma 5.11: For every ordinal α, the tree T (α) has no leaves. That is, for every t ∈ T (α),
there is an infinite path p ∈ [T (α)] such that t ≺ p.

Proof: We proceed by transfinite induction. We start by observing that T (0) = Seq trivially
has no leaves.

Suppose that T (α) has no leaves. Let s ∈ T (α+1). By the construction, we know that f([T
(α)
s ]) is

uncountable. Since Seq is countable, it follows there must be some t ∈ T (α) such that s ≺ t and
f([T

(α)
t ]) is uncountable. It follows that t ∈ T (α+1) as well, so s is not a leaf. Therefore T (α+1)

has no leaves.

Finally suppose that β is a limit ordinal and T (α) has no leaves for every α < β. Then T (β) =⋂
α<β T

(α) trivially has no leaves.

Proposition 5.12: The Cantor-Bendixson Rank of an analytic set is a countable ordinal.

Proof: Since the Baire Space N is Polish, we know that there is a countable basis {Un}n∈N
for the topology on N . Further by part 4 of proposition 5.8, we see that for every ordinal α, the
infinite paths [T (α)] ⊆ N form a closed set. Since the sequence of T (α) must stabilize eventually,
it follows that [T (α)] must stabilize eventually as well. By Lemma 5.11, we know that T (α) is leaf
free for all α. Hence for α < γ, since T (γ) is a leaf-free sub-tree of the leaf-free tree T (α), there
must be some infinite path p ∈ [T (α)] such that p 6∈ [T (γ)]. Hence we see that [T (γ)] ( [T (α)]. Since
these sets are closed and N has a countable basis, it immediately follows that the construction
must stabilize at a countable ordinal. Hence the Cantor-Bendixson Rank of A is countable.
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Proposition 5.13: For all ordinals α, let Rα (R stands for "removed") denote the set of points:

Rα :=
⋃

s∈T (α)\T (α+1)

f([T (α)
s ])

Rα is at most countable.

Proof: Notice that since T (α) \ T (α+1) is a subset of Seq, we are taking a union of countably
many sets. Further, for every s ∈ T (α) \ T (α+1), we know that f([T

(α)
s ]) is a countable set by

definition. Hence Rα is a countable union of countable sets, which is countable.

Finally we may prove the capstone theorem of this section:

Theorem 5.9 (reprint): The analytic sets in Polish spaces satisfy the Perfect Set Property.

Proof: Let A be an uncountable analytic set in a Polish space X. Let rk(A) denote the Cantor-
Bendixson Rank of A, and T ∗ := T (rk(A)). Let R := A \ f([T ∗]). It is easy to see that:

R ⊆
⋃

α<rk(A)

Rα

By Propositions 5.12 and 5.13, we know that rank(A) is a countable ordinal and each Rα is a
countable set. Thus R is countable. Since A is uncountable meanwhile, it follows that f([T ∗]) is
uncountable. We will show that f([T ∗]) has a perfect subset.

Fix an arbitrary s ∈ T ∗. I claim there are t1, t2 ∈ T ∗ such that s ≺ t1, t2, but f([T ∗t1 ]) and
f([T ∗t2 ]) are disjoint. Since f([T ∗]) is uncountable, we may pick infinite paths p1, p2 ∈ [T ∗] such
that f(p1) 6= f(p2). Since f is continuous, the topology on N allows us to find t1, t2 ∈ T ∗ such
that t1 ≺ p1, t2 ≺ p2, and f(O(t1)) is disjoint from f(O(t2)), where O(tj) = {p ∈ N : tj ≺ p}.
Since [T ∗tj ] = [T ∗ ∩O(tj)], we get the desired result.

By applying the above argument inductively, we may construct a sequence of points in T ∗ in-
dexed by finite binary sequences {sb : b ∈ 2<ω} with the following properties:

1. If b1 � b2, then sb1 ≺ sb2 .

2. If b1 and b2 are finite binary sequences such that b1 6� b2 and b2 6� b1, then f([T ∗b1 ]) and
f([T ∗b2 ]) are disjoint.

From this set, we may construct a new sub-tree U ⊆ T ∗ by:

U := {s ∈ T ∗ : s � sb for some finite binary sequence b}

Notice right away that every node s ∈ U has exactly one or two immediate successors. It follows
that the obvious map 2ω → [U ] is a homeomorphism. Further, our map f such that f(N ) = A is
an injection when restricted to [U ]. Hence applying our utility lemma 3.9, we see that f([U ]) ⊆ A
is perfect.

Corollary 5.14: Analytic sets in R satisfy the Continuum Hypothesis.

Remark 5.15: Interestingly, we came full circle through these arguments. Our arguments got
more interesting and sophisticated as we moved away from Cantor and Bendixson’s proof for
closed subsets of R and into Polish spaces, Gδ sets, and Borel sets. When it came to analytic sets
though, we ultimately had to use the same basic approach as Cantor and Bendixson!

6 The Bottom of the Rabbit Hole
We have now shown that analytic sets (and thus Borel sets) have the Perfect Set Property. It is
worth pointing out now that the analytic sets do not form a Σ-algebra. While the analytic sets
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are closed under countable unions and intersections, the compliment of an analytic set need not be
analytic. This gives us a natural idea of a "co-analytic" set – a set whose complement is analytic.
Continuing this line of thinking naturally leads to the notion of the "Projective Hierarchy".

Definition 6.1: Let X be a Polish space. Then we define the "Projective Hierarchy" on X as
follows:

• Σ1
1 is the class of analytic subsets of X.

• Π1
1 is the class of sets X with analytic complement is analytic. These are known as the

"co-analytic sets".

• For n ∈ N, a subset A ⊆ X is Σ1
n+1 if there is a Π1

n subset B of the Polish space X×X such
that A is the first coordinate projection of B.

• For n ∈ N, a subset A ⊆ X is Π1
n+1 if there is a Σ1

n subset B of the Polish space X×X such
that A is the first coordinate projection of B.

• For n ∈ N, a subset A ⊆ X is ∆1
n if it is both Σ1

n and Π1
n.

Remark 6.2: It turns out that ∆1
1 is exactly the class of Borel sets in X. This major result is due

to Suslin.

Looking at R as a Polish space, how far up the Projective Hierarchy can the Perfect Set Pro-
gram go? That is, for which n do Π1

n and Σ1
n sets have the Perfect Set Property?

In the early 1900s, the French analysts were working on this problem to no avail. No one was
able to make any headway on even showing that Π1

1 sets have the Perfect Set Property. After
years of failed attempts, Luzin allegedly remarked that "One does not know and one will never
know" whether co-analytic sets have the Perfect Set Property.

Luzin turned out to be exactly right. Like the Continuum Hypothesis itself, the statement "co-
analytic sets in R have the Perfect Set Propertry" is independent of ZFC. In 1938, Gödel published
the following theorem:

Theorem 6.3 (Gödel, 1938): In ZFC + V=L, there is an uncountable Π1
1 set of real numbers

that does not contain a perfect subset.

That is, there is a specific model of ZFC in which the co-analytic sets do not have the perfect
set property.

Meanwhile, following Cohen’s work on Forcing, set theorists were able to build bizarre models
of set theory in which all kinds of interesting properties hold. In 1970 Robert Solovay published
the following theorem:

Theorem 6.4 (Solovay, 1970): Suppose there is a transitive ε-model of ZFC + "There is an inac-
cessible cardinal". Then there is a transitive ε-model of ZF in which every uncountable set of reals
contains a perfect subset.

Solovay’s model shows that there is a model of set theory in which the Perfect Set Property holds
– not just for the co-analytic sets, but for all sets! The only caveat is that Solovay’s model doesn’t
satisfy the axiom of choice. In fact though, we can find a model of ZFC in which the co-analytic
sets have the Perfect Set Property. Indeed, for a set A, let L[A] denote the sets constructable
from A. L[A] is a model of ZFC set theory. Suppose we have a model where for every A ⊆ ω,
we have that ℵL[A]

1 is countable. That is, the cardinal ℵ1 relativized to L[A] is countable. One
may show that such a model exists by Levy Collapse, and that such a model satisfies that every
uncountable Σ1

2 (and hence Π1
1) subset of the reals has a non-empty perfect subset. For more de-

tails on this construction, look at theorem 25.38 in Jech. We summarize with the following theorem:

Theorem 6.5: There is a model of ZFC in which the co-analytic sets have the Perfect Set Property.
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Thus the Perfect Set Program bottoms out at Σ1
1. We did pretty well though! While there

are only 2ℵ0 analytic subsets of R, this class is still extremely general. In fact, I bet I can name
the only two non-analytic sets you’ve ever worked with right now...

7 Two Pathological Sets
In all likelihood, you have seen exactly two examples of non-analytic sets. These are Vitali sets
and Hamel bases for R as a Q-vector space. Let’s review these quickly.

Vitali sets: Take R as an additive group, and consider the quotient group R/Q. The standard
Vitali set V is formed by taking exactly one representative of every coset. Some use "Vitali set"
to more generally refer to any set with one representative of each equivalence class of R/D, where
D is a dense countable subgroup of the additive group of reals. We will be using the standard
Vitali set, but nearly everything we say will generalize. You likely encountered the Vitali set as an
example of a non-measurable set in a real analysis course.

Hamel bases for R as a Q-vector space: Consider the real numbers as a vector space over Q. A
Hamel basis H for this vector space is a collection of real numbers such that for every r ∈ R, there
is a unique finite collection h1, · · · , hn ∈ H and q1, · · · , qn ∈ Q\{0} such that r = q1h1+· · ·+qnhn.
You likely encountered Hamel basis for R over Q as a counter-intuitive consequence of the Axiom
of Choice, or when studying fields in algebra.

Remark 7.1: Before anything else, let’s observe that if V is a Vitali set and H is a Hamel ba-
sis for R as a Q-vector space, then |V | = |H| = |R|. To see this for V is easy. The defining
property of Vitali sets let’s us write R as a countable union of disjoint sets by:

R =
⋃
v∈V

v +Q

It follows that |R| = |V | × |Q|, which implies that |V | = |R|.

For H, we appeal to the fact that if F is an infinite field and V is a vector space over F, then
|V | = max{|F|,dim(V )}. It follows that |H| = |R|, since dim(R) = |H|.

These elementary cardinality arguments demonstrate that these sets cannot plausibly violate the
Continuum Hypothesis in ZFC.

Vitali Sets and Hamel Bases are not Analytic
Let’s discuss why Vitali sets and Hamel bases of R over Q are not analytic. These arguments rely
on the following 1917 theorem of Luzin.

Theorem 7.2 (Luzin, 1917): Every analytic set in R is Lebesgue measurable.

We will not prove this theorem. The argument relies on the fact that every analytic set may
be written as the continuous image of the Baire space N , and that every set in R may be well
approximated by a measurable set. For more detials see Jech theorem 11.18. The fact that Vitali
sets are not analytic is an obvious corollary to the theorem.

Corollary 7.3: Every Vitali set in R is not analytic.

Next, let’s look to Hamel bases for R over Q. Perhaps surprisingly, we cannot use the mea-
surabilty of analytic sets to prove that such a basis isn’t analytic directly. There are bases that
are Lebesgue measurable!

Proposition 7.4: There is a Hamel basis H for R as a Q vector space such that H is Lebesgue
measurable.

Proof: Take C to be the standard middle-thirds Cantor set. Recall that C consists of exactly
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those real numbers in the interval [0, 1] with a ternary expansion consisting of all 0s and 2s. It
immediately follows that C + C = [0, 2]. Hence the span of C is R when viewing R as a Q-vector
space. Thus there is a Hamel basis H ⊆ C. This Hamel basis will have outer measure 0 by the
monotonicity of outer measure, making H Lebesgue measurable.

Remark 7.5: While a Hamel basis for R as a Q-vector space can be measurable, there is a nice way
to build a non-measurable set out of it. Let H be such a Hamel basis. Index the elements of H by
H = {hr : r ∈ [0, 1]}. For each x ∈ R, let a0(x) denote the coefficient on h0 in the H-expansion of
x. For every r ∈ [0, 1], set:

A0 := {x ∈ R : a0(x) = 0}

What can we say about A0? It will be illuminating to look at the case where h0 = 1. In this case,
we see that span(h0) = span(1) = Q. So for every x ∈ R, there is a rational number q ∈ Q and
y ∈ A0 such that x = q + y. Further, since A0 is closed under addition, we see for all x, y ∈ A0,
x − y 6∈ Q. These two properties together tell us that A0 contains exactly one member of each
coset of Q as a subgroup of R. That is, A0 is a Vitali set!

In the event that h0 6= 1, the exact same argument holds except span(h0) = h0Q and we get
a generalized Vitali set instead. In any event, A0 will be non-measurable for the exact same rea-
sons as a Vitali set is.

With this method for constructing a non-measurable set out of a Hamel basis for R over Q,
we may proceed with our argument.

Proposition 7.6: Let H be a Hamel basis for R over Q. H is not analytic.

Proof: The following proof is reproduced from Nadkarni and Sunder (https://www.imsc.res.in/ sun-
der/mgnvss.pdf). Denote the elements of H by H = {hr : r ∈ [0, 1]}. For sake of contradiction,
suppose that H is analytic. Let A := H \{h0}. For n ∈ N and ~q ∈ Qn, define the map f~q : An → R
by:

f~q(a1, · · · , an) =

n∑
j=1

qjaj

Since H is analytic, we see that A is analytic, and that An is analytic as a subset of Rn. Hence
f~q(A

n) ⊆ R is analytic, since f is continuous.

Now for each x ∈ R, let ar(x) denote the coefficient on hr in the H expansion of x. Let
A0 := {x ∈ R : a0(x) = 0}. Recall from remark 7.5 that A0 is a generalized Vitali set, and
hence non-measurable. Notice that x ∈ A0 if and only if there is an n ∈ N and ~q ∈ Qn such that
x ∈ f~q(An). Hence we may write:

A0 =
⋃
n∈N

⋃
q∈Qn

f~q(An)

So A0 is a countable union of analytic sets, and thus is analytic itself. But then Luzin’s theorem
guarantees that A0 is measurable. This is a contradiction. Hence H must not be analytic.

Vitali Sets and Hamel Bases with Perfect Subsets
At the beginning of this essay I made the claim that you have probably never seen an uncount-
able set of reals which provably does not contain a perfect subset. Both Vitali sets and Hamel
bases for R as a Q-vector space seem like they may challenge my assertion. They are not analytic,
so we cannot apply our above work. Let’s make sure I wasn’t lying. We prove a pair of propositions.

Proposition 7.7: There is a Vitali set V ⊆ R that contains a perfect subset.

To prove this, we will need a pair of lemmas:

Micro Lemma 7.8: Let I1 and I2 be disjoint compact intervals in R. Let q ∈ Q. Then there
are compact intervals J1 ⊆ I1 and J2 ⊆ I2 such that for all x, y ∈ J1 ∪ J2, the difference x− y 6= q.
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Proof: Let `(·) denote the length of an interval. Without loss of generality, suppose that I1 is
to the left of I2. First, take J1 to be a compact sub-interval of I1 such that `(J1) < min{q, `(I2)}.
Since `(J1) < q, for all x, y ∈ J1 we have that x− y 6= q.

Now we translate J1 by q to get J1 + q = {x + q : x ∈ J1}. Since `(J1) < `(I2), we know
that (J1 + q) 6⊃ I2. It follows that I2 \ (J1 + q) is either all of I2, or a half-open sub-interval of I2.
Either way, we may take a compact sub-interval J2 ⊆ I2\(J1+q) such that `(J2) < q. Then by con-
struction, for x, y ∈ J2 and z ∈ J1, we have that x−z 6= q and x−y 6= q. This proves the lemma.

Lemma 7.9: Let I1, · · · , In be disjoint compact intervals in R. Let q ∈ Q. Then there are disjoint
compact intervals J1, · · · J2n such that J2i−1, J2i ⊆ Ii for all i, and for all x, y ∈ J1 ∪ · · · ∪ J2n, the
difference x− y 6= q.

Proof: This is a situation where the construction is best expressed in pseudo-code. Treat the
micro lemma 7.8 (ML) as a subroutine. For two disjoint compact intervals I1 and I2, let a call to
the subroutine ML(I1, I2) output disjoint compact intervals (J1, J2) such that J1 ⊆ I1, J2 ⊆ I2,
and for all x, y ∈ J1 ∪ J2 the difference x− y 6= q.

Let I1, · · · , In be disjoint compact intervals in R. we replace these intervals with new, smaller
subintervals I1, · · · In by running the following program:

i := 1
while i < n

j := i + 1
while j ≤ n

(I_i, I_j) := ML(I_i, I_j)
j := j + 1

end while
i := i + 1

end while
return (I_1, ..., I_n)

After running this program, notice that our new Ij is a compact sub-interval of our original Ij ,
but now for all x, y ∈ I1 ∪ · · · ∪ In, the difference x− y 6= q.

To finish off the proof of the lemma, for each j take any two disjoint compact subintervals
J2j−1, J2j ⊆ Ij . The collection J1, · · · , J2n are the desired intervals.

Proof of Proposition 7.7: Say that a set X ⊆ R has the "irrational difference property" if for
all x, y ∈ X, the difference x − y 6∈ Q. Notice that for any such X, there is a Vitali set V con-
taining X. Since uncountable closed sets have the Perfect Set Property, it will suffice to find any
uncountable closed set C with the irrational difference property. We may expand such a C to a
Vitali set.

Let I01 := [0, 1], and let {q1, q2, · · · } = Q be an enumeration of the rationals. Now using our
lemma, for all n ∈ N, we may construct disjoint compact intervals In1 , · · · , In2n such that:

1. In+1
2j−1 and In+1

2j are sub-intervals of Inj .

2. For all x, y ∈ In+1
1 ∪ · · · ∪ In+1

2n+1 , the difference x− y 6= qn+1.

Set Cn := In1 ∪ · · · ∪ In2n , and set C :=
⋂
n Cn. This Cantor-set-like construction is clearly un-

countable and closed. Now suppose that C does not have the irrational difference property. Then
there are x, y ∈ C such that x − y = qn for some n. But C is a subset of Cn which violates our
construction. Hence C has the rational difference property. This completes the proof.

Proposition 7.10: There is a Hamel Basis for R as a Q-vector space that contains a perfect subset.

Proof: The following construction comes from a paper of F. B. Jones. Take an enumeration
of the rationals by Q = {r1, r2, · · · }. Without loss of generality, take r1 = 0. Construct a series of
closed intervals {In,m : n ≥ 1, 1 ≤ m ≤ n} with the following properties:
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1. I1,1 63 0.

2. For each n,m, the intervals In+1,2m−1 and In+1,2m are disjoint subintervals of In,m with
In+1,2m−1 lying entirely to the left of In+1,2m.

3. For each n, given x1, · · · , xn ∈
⋃2n−1

m=1 In,m, the following holds:

q1x1 + · · ·+ qnxn with each qi ∈ {r1, · · · , rn} =⇒ q1 = · · · = qn = r1 = 0

This construction can be formalized in a similar way to how we did for the Vitali set. Now take:

M :=
⋂
n

2n−1⋃
m=1

In,m


It is clear that M is a perfect set. By our construction, it is also clear that M is a set of Q-linearly
independent points in R. M may be extended to a Hamel basis H for R as a Q-vector space.

So prior to this post, you have seen two sets where are not analytic. However, there are still
Vitali sets and Hamel bases of R over Q that contain perfect subsets. It follows that such sets on
their own are not going to be useful for showing the futility of the Perfect Set Program. We’ll need
something even more pathological...

8 The Most Pathological Sets I Know: Bernstein Sets
Let’s introduce a third kind of pathological set:

Definition 8.1: A subset B ⊆ R is a “Bernstein set” if and only if for every uncountable closed
C ⊆ R, we have that C∩B is non-empty, but C 6⊆ B. That is, B touches every uncountable closed
set, but contains none of them.

Notice that t is not immediately clear that Bernstein sets even exist! I encourage you to think
about why such a set exists before you read further. We present the existence of a Bernstein set
as a theorem:

Theorem 8.2: There is a Bernstein set in R.

Proof: Let C := {C ⊆ R : C is closed and |C| = |R|}. It is easy to see that |C| = 2ℵ0 . Take
C = {Cα}α<γ to be an indexing by the ordinals, with γ being the smallest ordinal of size 2ℵ0 .

By transfinite induction, define:

1. A0 := ∅ and B0 := ∅

2. Aα+1 := Aα ∪ {aα} and Bα+1 := Bα ∪ {bα} for every α < γ, where aα and bα are distinct
points chosen from Cα \ (Aα ∪Bα).

3. Aβ :=
⋃
α<β Aα and Bβ :=

⋃
α<β Bα if β is a limit ordinal.

Why is this well defined? For all α < γ, we have that |Aα| = |Bα| = |α| since we add in exactly
one point at every step in the construction. Since γ is the first ordinal with the same cardinality
as R, we also have that |α| < |R| for all α < γ. So |Cα| = |R| and |Aα ∪ Bα| < |R|, we have that
|Cα \ (Aα ∪Bα)| is infinite. So we can always find a measly two points!

Set B := ∪α<γBα. By construction, it is clear that for each α we have:

bα ∈ B ∩ Cα

so B intersects every element of C. On the other hand, since aα 6∈ B by our construction, we have
that Cα 6⊆ B. Thus B is a Bernstein set.
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Remark 8.3: This exact proof works in an arbitrary Polish Space.

Bernstein sets are a bit weird. It will do us good to briefly run through a bunch of properties
of these sets. Note that some of these properties (like uncountability) are obvious for the Bern-
stein set we constructed in the proof of Theorem 8.3, but are not obvious directly from the definition
of a Bernstein set.

Proposition 8.4: Let B ⊆ R be a Bernstein set. B has the following properties:

1. R \B is a Bernstein set as well.

2. The Lebesgue outer measure of a Bernstein set is infinite.

3. B is not Lebesgue measurable.

4. B is uncountable.

5. B contains no non-empty perfect subset.

6. B is not analytic nor co-analytic.

7. B does not have the "Property of Baire".

Proof:

1. By definition, for any uncountable closed C, there must be two points c1, c2 ∈ C such that
c1 ∈ B and c2 ∈ R \B. Thus R \B touches every uncountable closed set but contains none
of them as well.

2. Let m∗(·) denote the Lebesgue outer measure. Suppose that m∗(B) < ∞. We may find an
open set U ⊇ B such that m∗(U) < ∞. Set C := R \ U . Notice that since U is open, C is
closed. U and C are both measurable, and R = U ∪ C, so m∗(C) = ∞. It follows that C
is uncountable. But this makes C an uncountable closed subset of R \ B. This contradicts
property 1, as R \B is a Bernstein set.

3. Suppose C is a closed subset of B. Then C must be countable by definition. It follows that
the Lebesgue inner measure of B is zero. But by part 2, we have that the outer measure is
infinite. Thus B must be non-measurable.

4. This follows immediately from property 2.

5. Every non-empty perfect set in R is uncountable and closed, and thus not a subset of B.

6. Since analytic sets have the Perfect Set Property, part 5 tells us that B cannot be analytic.
Since R \B is also a Bernstein set by part 1, part 5 says it also cannot be analytic. Thus B
cannot be co-analytic either.

7. For a set A to have the Property of Baire means there is an open set U such that the
symmetric difference A∆U is meager. For sake of contradiction, Suppose that B has the
Property of Baire. One may show that sets with the Property of Baire form a σ-algebra, so
R\B also has the property. The Baire cateogry theorem ensures R is not meager as a subset
of itself. Since the union of meager sets is meager, it follows that either B or R \ B are not
meager. Suppose that B is not meager. Then we may write B = U∪M where U is non-empty
and open, and M is meager. The Baire category theorem ensures there is an uncountable
Gδ subset of R contained in the difference U \M . By our past work though, this means
that G contains a non-empty perfect subset P ⊆ R. So P ⊆ B, which is a contradiction
to the definition of a Bernstein set since perfect sets are uncountable and closed. The same
argument works if R \B is not meager, since R \B is a Bernstein set by property 1.

Remark 8.5: These properties hold in any uncountable Polish space.

Remark 8.6: Bernstein sets thus demonstrate the futility of the Perfect Set Program. Every
Bernstein set is uncountable, but demonstrably contains no perfect subset.
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So what makes Bernstein sets so pathological? Early descriptive set theorists were largely con-
cerned with three "regularity properties" of subsets of R. These regularity properties were the
Perfect Set Property, Lebesgue measurability, and the Property of Baire. Proposition 8.4 shows
that Bernstein sets lack all three of these properties! They are, in a sense, fully pathological.

Vitali Sets and Hamel Bases Redux
In section 7 of this essay we saw that despite not being analytic, there are Vitali sets and Hamel
bases for R as a Q vector space that contain non-empty perfect subsets. Is it true that all such
sets contain perfect subsets? Now that we have seen Bernstein sets, we have the tools to answer
this question.

Proposition 8.7: There is a Bernstein set which is also a Vitali set.

Proof: Recall that a set X ⊆ R is said to have the "irrational difference property" if and only if
all x, y ∈ X, the difference x − y 6∈ Q. For any set C ⊆ R with |C| < 2ℵ0 , the set of rational
translations C + Q := {c + q : c ∈ C, q ∈ Q} also has cardinality less that 2ℵ0 . Copying our
construction of a Bernstein set in Theorem 8.2, the prior observation allows us to construct a pair
of Bernstein sets A and B such that A ∩ B = ∅, and both A and B have the irrational difference
property. We simply must select our points aα and bα so as to avoid creating a rational difference.

Since A has the irrational difference property, A contains at most one element of every coset
of R/Q. We may thus extend A to a Vitali set V ⊇ A by tossing in an arbitrary representative of
all the missing cosets. We claim that V is a Bernstein set.

To see that V is a Bernstein set, we simply must prove V contains no uncountable closed sub-
set. Take any non-zero rational q, and consider the set V + q. Since V is a Vitali set, we have
V ∩(V +q) = ∅. Hence we find that V ⊆ R\(V +q) = (R\V )+q. Since R\V is contained in R\A,
which is Bernstein by Proposition 8.4, R \ V contains no uncountable closed subset. Translating
by a rational will not change this, so we see that V is a Bernstein set.

Proposition 8.8: There is a Bernstein set which contains a Hamel basis for R as a Q-vector space.

Proof: In this article by Kysiak (https://www.degruyter.com/document/doi/10.2478/s11533-009-
0053-0/html), a method for cooking up Bernstein sets with desired algebraic properties is presented.
As an example of the power of the method, Kysiak cooks up a Bernsetein set B such that B+B = B
and B −B = R. Since B −B ⊆ span(B), we see there must be a basis H contained inside B.

Previously we showed that Vitali sets and Hamel bases for R as a Q-vector space can contain
perfect subsets. Thus, it would be fruitless to try and prove that an arbitrary Vitali set or Hamel
basis could break the Perfect Set Program. Meanwhile, It follows from Propositions 8.7 and 8.8
that specific constructions of these pathological sets may be counterexamples! However, showing
this required us to, more or less, construct a Bernstein set that happened to have extra properties.
Is there a way to construct a Vitali set or a Hamel basis that doesn’t have a non-empty perfect
subset without using this technology? If so, we could demonstrate the futility of the Perfect Set
Program without relying on Bernstein sets! At the time of writing though, I am unaware of such
a construction.

Bernstein Sets and the Continuum Hypothesis
At this point, we know that Bernstein sets are uncountable and have no non-empty perfect sub-
sets. This takes a powerful tool for proving a set has the cardinality of the continuum off the table.
Could it be that there are Bernstein sets with intermediate cardinalities? No it could not.

Proposition 8.7: Let B ⊆ R be a Bernstein set. B has the cardinality of the continuum.

Proof: It will clearly suffice to find a collection A of disjoint uncountable closed subsets of R with
|A| = |R|. To this end, let S := {0, 2}ω denote the collection of all countably infinite sequences of
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0s and 2s. Let f : S → R be the "ternary encoding" operation:

f(s1, s2, s3, · · · ) = [0.s1s2s3 · · · ]3 =

∞∑
j=1

sj
3j

where (s1, s2, s3, · · · ) ∈ S. By identifying {0, 2}ω with the Cantor Space 2ω in the obvious way, we
may view f as a homeomorphism onto the Cantor set.

Now let I : S × S → S denote the "interweaving operation":

I(s, t) = (s1, t1, s2, t2, s3, t3, · · · )

where s = (s1, s2, s3, · · · ) and t = (t1, t2, t3, · · · ) are sequences in S.

Fix a sequence t ∈ S. Let It : S → S by It(s) := I(s, t). It is easy to see that It is a homeomor-
phism onto its image. So for every t, we have that It(S) ∼= 2ω. Hence f ◦ It(S) is a homeomorphic
copy of the Cantor set in R. Finally we notice that for t 6= r, that f ◦It(S) and f ◦Ir(S) are disjoint.

It follows from this reasoning that A := {f ◦ It(S) : t ∈ S} is a collection of continuum-many
disjoint uncountable closed subsets of R. Since our Bernstein set B must contain at least one point
from each A ∈ A, it follows that |B| = |R|.

This conclusion should give us pause. Even Bernstein sets provably have the cardinality of the
continuum! They might not have the Perfect Set Property, but they still aren’t even possibly
violations of the Continuum Hypothesis. We’ve proven the futility of the Perfect Set Program, but
nothing more! We would need to work even harder to come up with a description of a set that
even plausibly violates the continuum hypothesis.

9 Consequences and Conclusions
Let’s recap our work. In section 1, we introduced perfect sets and proved that non-empty perfect
sets in R always have the cardinality of the continuum. Consequently, perfect sets presented a path
toward proving the Continuum Hypothesis, dubbed the Perfect Set Program. Over the next few
sections, we fleshed out a variety of concepts and tools, most notably Cantor-Bendixson analysis, in
order to show that uncountable sets of increasing complexity necessarily contain non-empty perfect
subsets. This culminated with a proof that every analytic set satisfies the Continuum Hypothesis
in section 5. In section 6, we saw how work of Gödel and Solovay showed that in the absence of
additional axioms, we cannot say whether or not the co-analytic sets have the Perfect Set Property.
In sections 7 and 8, we looked at Vitali sets, Hamel bases, and Bernstein sets. All three of these
types of sets are extremely pathological and are necessarily non-analytic. Vitali sets and Hamel
bases may or may not contain non-empty perfect subsets, while Bernstein by definition cannot
contain a non-empty perfect subset. Thus of these three classes of sets, only Bernstein sets truly
show the futility of the Perfect Set Program. However, none of these sets could even possibly have
a cardinality strictly between those of the naturals and the reals.

I feel comfortable saying that we have proven our thesis that virtually every uncountable set
we mathematicians come across in the wild has the cardinality of the continuum. We had to work
really extremely hard to find sets without the Perfect Set Property, and even then these sets still
had the cardinality of the continuum. How should we respond to this finding?

Empiricist Set Theory?
In some sense, the success of the Perfect Set Program can be "empirical evidence" for the Con-
tinuum Hypothesis. When we come across an infinite subset of R in a wild, we should take this
as evidence that "most likely" it is either countable or has the full cardinality of the continuum.
Every example of a topological space we work with will not be of an intermediate cardinality.
Further, suppose we have some proposition that we can prove is true if we assume the Continuum
Hypothesis. Then this empirical evidence suggests that we should still be able to apply the result,
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even if we don’t want to assume the Continuum Hypothesis... Ok kind of. You should probably
still check everything. But it’s interesting! I’m curious if there is a way to make this idea formal.
Is there a way to put a probability distribution on the power set of the reals that puts a more
probability mass on classes of sets of lower complexity?

But we don’t need to rely on notions of likelihood. We’re set theorists, and it is our God given
right to pick our own damn axioms. If we engage in some inductive reasoning, perhaps the success
of the Perfect Set Program should be taken as evidence that in the "true" set theory–God’s set
theory–the Continuum Hypothesis is true. From the human perspective, our choice of the axioms
of set theory are up to our tastes, of course, but this certainly pushes my tastes closer to "the
continuum hypothesis is true". It’s worth noting that even when V = L, the situation in which
the Perfect Set Program breaks down at Π2

1, the Continuum Hypothesis holds! While not formal,
I think the Perfect Set Program provides an interesting rationale for accepting the Continuum
Hypothesis as an additional "standard axiom" of set theory.

10 Applications
There’s one last loose end to tie up. Way back in the introduction, I said that the pursuit of the
Perfect Set Program provided mathematicians with new and powerful tools. If you made it this
far in this essay, I think you will agree that these tools are interesting. But useful? Really?

Yes, really. The techniques of Cantor-Bendixson analysis can be used to great effect in Model
Theory. All of these examples come from David Marker’s book "Model thoery: An Introduction".
Basic familiarity with model theory is assumed.

Application 1: Cantor Bendixson Analysis on Stone Spaces
Definition 9.1: Let T be a theory over a language L. An "n-type" in T is a collection τ(x1, · · · , xn)
of formulas in L with free variables among x1, · · · , xn such that Th(A)∪τ(x1, · · · , xn) is satisfiable
with a consistent assignment of the x1, · · · , xn free variables. An n-type τ(x1, · · · , xn) is "com-
plete" if and only if for every formula φ(x1, · · · , xn), either φ or ¬φ is in τ . We let Sn(T ) denote
the set of all complete n-types over T .

Remark 9.2: These "types" are different than the kinds of types we deal with in type theory.
These types are about categorizing different "kinds" of elements in a structure by looking at all
the different formulae they satisfy. Indeed, for any element a in a structure M , we may generate
a complete type in S1(Th(M)) by looking at {φ(x) : M � φ(a)}.

Example 9.3: Consider the complete first order theory of arithmetic T := Th(〈N, 0, S,+, ·, <〉).
We may define P := {n ∈ N : n is prime } inside of T . Enumerate the primes sequentially as
P = {p1, p2, · · · }. For any p ∈ P , let p | x be a shorthand for the formula:

p | x := ”(∃y)(y · p = x)”

That is, p | x asserts that x is divisible by p. Let F ⊆ P be a finite set of primes, and consider the
following collection of formulae:

τ(x) := {p | x : p ∈ F} ∪ {p - x : p 6∈ F}

Is τ a type? Yes! To check this, we need to see that there is some model of T in which there
is an element that simultaneously satisfies all of the formulae in τ . But this is easy! Take
〈N, 0, S,+, ·, <〉 � T , and assign the product of primes

∏
p∈F p to the variable x.

What if we instead took F ′ ⊆ P to be an infinite collection of primes, and the analogous τ ′(x)? We
can no longer multiply infinitely many primes together to show that τ ′ is a type. However, every
finite subset of the sentences in τ ′(x) is satisfiable, so we may apply the compactness theorem to
assert that there is a non-standard model of arithmetic that satisfies τ ′. Hence τ ′ is still a type.
Since there must further be a countable model realizing this type, the 2ℵ0 different choices of F
illustrate that there are at least 2ℵ0 non-isomorphic countable models of the complete first order
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theory of arithmetic.

Construction 9.4: For a theory T , we may endow the complete n-types of T with a topology.
Indeed, for any formula φ in n-free variables, let [φ] denote the collection:

[φ] := {τ ∈ Sn(T ) : φ ∈ τ}

That is, [φ] is the collection of all the different complete n-types that contain φ as a formula. Take
the collection of such sets as a basis for a topology on Sn(T ). One may easily show the following
lemma:

Lemma 9.5: Let T be a theory, and endow Sn(T ) with the topology from construction 9.4. The
topology has the following properties:

1. For all formulae φ and ψ in the same n free variables, we have that [φ ∧ ψ] = [φ] ∩ [ψ],
[φ ∨ ψ] = [φ] ∪ [ψ], and [¬φ] = Sn(T ) \ [φ].

2. Every [φ] is clopen.

3. Sn(T ) is compact, Hausdorff, and totally disconnected.

A topological space that is compact, Hausdorff, and totally disconnected is called a "Stone space".
It follows from the lemma that every space of complete types is a Stone space. Notice that Stone
spaces are not necessarily Polish, so our prior Cantor Bendixson work does not apply. We can
extend our analysis though:

Construction 9.5 (Cantor-Bendixson Rank for Stone Spaces): Let T be a Stone space. Let T ′
denote the collection of non-isolated points in T . We now define by transfinite induction:

T (0) := T

T (α+1) :=
(
T (α)

)′
for all ordinals α

T β :=
⋂
α<β

T (α) for limit ordinals β

One may verify that each T (α) is a Stone space. Let T∞ denote the collection of points that are
in T (α) for all ordinals α. Further, we easily see that there must be some minimal α such that
T (α) = T∞. We call this ordinal the "Cantor-Bendixson rank" of T , and denote it by rk(T ).
Further, we may show that T∞ is a perfect set. We use these ideas to prove the following theorem:

Theorem 9.6 (Cantor-Bendixson Theorem for Stone Spaces): Let T be a Stone space, and let
Clopen(T ) denote the collection of clopen sets in T . If |T | 
 |Clopen(T )|, then |T | ≥ 2ℵ0 .

Proof Sketch: First, we note that |T \ T∞| ≤ |Clopen(T )|. To see this, suppose that x ∈ T is
removed at stage α+1. Then there is a clopen set C such that x is the unique element in C∩T (α).
This gives us an injection from T \ T∞ into Clopen(T ).

It follows that since |T | 
 |Clopen(T )|, we have that T∞ 6= ∅. It is also easy to duplicate our
prior proofs and show that a perfect Stone space has cardinality at least as large as the continuum.
Thus |T | ≥ |T∞| ≥ 2ℵ0 .

This theorem has a handful of striking corollaries:

Corollary 9.7: Suppose that T is a countable theory. Then |Sn(T )| ≤ ℵ0 or |Sn(T )| = 2ℵ0 .

Corollary 9.8: If T has an ω-saturated model, then T has an atomic model.

Corollary 9.9: Suppose that T is a "small" theory, meaning that for all n, |Sn(T )| ≤ ℵ0. Then for
all n, viewing Sn(T ) as a Stone space, the isolated points are dense in Sn(T ).
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Application 2: Morley Rank
Let M be an L-structure. For any A ⊆M , let LA be the language where we have extended L by a
constant symbol for every a ∈ A. Interpret M as an LA structure in the obvious way. An n-types
on M in with parameters from A is a collection of LA-formulae τ(x1, · · · , xn) with the same free
variables such that Th(M)∪ τ is satisfiable. We denote the space of complete n-types overM with
parameters from A by SMn (A). This notion allows us to extend our analysis of types from theories
to models.

Definition 9.10: Let M be a structure. M is "ω-saturated" if and only if for all finite A ⊆ M
and τ(x) ∈ SMn (A), the type τ is realized in M . That is, there is a tuple m ∈ Mn such that
τ = {φ : M � φ(m)}.

Definition 9.11: Let T be a complete theory. T is "ω-stable" if and only if for all models M � T
and all A ⊆M with |A| = ω we have |SMn (A)| = ω.

In a sense, saturation is telling us that our model is big enough to realize all its types, and
stability tells us that that our theory is simple enough that we don’t have "too many types". The
concept of "Morley rank" is a powerful tool for analyzing such models and theories that gives us
a sense of "dimension".

Definition 9.12: Let M be an L structure and φ(v1, · · · , vn) be an LM formula. The "Morely
rank" of φ in M , denoted RMM (φ), is defined transfinitely as follows:

1. RMM (φ) = −1 if and only if φ[M ] = {m ∈Mn : M � φ(m)} = ∅.

2. RMM (φ) ≥ 0 if and only if φ[M ] 6= ∅. That is, φ is satisfiable in M .

3. RMM (φ) ≥ α + 1 for ordinal α if and only if there are LM formulae ψ1(v), ψ2(v), · · · such
that the collection of ψj [M ] are pairwise disjoint subset of φ[M ], and each RMM (ψj) ≥ α.

4. RMM (φ) ≥ α for limit ordinal α if and only if RMM (φ) ≥ β for all β < α.

5. RMM (φ) =∞ if and only if RMM (φ) ≥ α for all ordinals α.

Remark 9.13: Notice that this definition is extremely cumbersome and applies to all formulae
in all structures. We may clean this up considerably by restricting our attention to models of
ω-saturated models. We present the following proposition:

Proposition 9.14: Let A be a structure, φ be a formula with parameters from A, and let M
and N be ω-saturated elementary extensions of A. The following hold:

1. RMM (φ) = RMN (φ).

2. If M ′ is another ω-saturated model such that M �M ′, then RMM (φ) = RMM ′(φ).

This proposition allows us to simplify our definition of Morley rank in the following way. Since
saturated extension always exist, we may simply work in a highly saturated model and remove the
model dependence. For details, see section 6.2 of Marker on the Monster Model.

Morley rank has applications in Algebraic Geometry. Here’s an example:

Theorem 9.15: Let K be an algebraically closed field, and V ⊆ Kn an irreducible algebraic
geometry. Then RM(V ) is the Krull dimension of V .

How does this connect to Cantor Bendixson analysis? Well, let T be an ω-stable theory and
let M � T . Considering SMn (M) as a closed subset of itself as a Stone space, we may compute
the Cantor-Bendixson rank of any p ∈ SMn (M). That is, the unique ordinal α such that p is in
(SMn (M))(α) \ (SMn (M))(α+1) (or ∞ if there is no such α). We present the following theorem:
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Theorem 9.16: Let T be an ω-stable theory and let M � T . For any complete τ ∈ SMn (M),
let rank(τ) denote the Cantor-Bendixson rank of τ as an element of SMn (M). Then:

rank(τ) = min{RM(φ) : φ ∈ τ}

Thus Cantor-Bendisxon analysis gives us a useful computational tool in Algebraic Geometry!

Application 3: The Number of Countable Models
Here’s a fun question to work through. Suppose we have a complete theory T over a countable
language. Up to isomorphism, how many distinct countable models can T have? Call this quantity
N(T ). By the Lowenheim-Skölem theorem, we know that N(T ) ≥ 1. Looking at any countably
categorical theory (like the theory of dense linear orders without endpoints), we see that N(T ) can
be exactly 1. Playing around with constants and unary predicates, it’s also easy to see that for
every finite n ≥ 3, there are theories such that N(T ) = n. It is a surprising result of Vaught that
there is no theory T such that N(T ) = 2.

What about the infinite cases? Looking at the theories of an algebraically closed field of char-
acteristic p <∞, and the first order theory of the field of real numbers, we find theories for which
N(T ) = ℵ0 and N(T ) = 2ℵ0 . In the absence of the Continuum Hypothesis, can we have a theory
T with ℵ0 < N(T ) < 2ℵ0? Surprisingly, this is an open problem! According to Marker, the best
known result is a result of Morley:

Theorem 9.17 (Morley): If N(T ) > ℵ1, then N(T ) = 2ℵ0 .

The details of this proof require going into infinitary logic, a very interesting topic that deserves a
much more full discussion than I can provide here. Sweeping these details under the rug, the proof
boils down to showing that for all theories T , a cetain class of types can always be identified with
an analytic subset of the Cantor space 2ω. Thus the Perfect Set Property for analytic sets gives
us that this class is either countable, or has cardinality of the continuum. This technique can’t
eliminate the possibility of having ℵ1 models, but it eliminates all other potential intermediate
cardinalities.

11 Appendix 1: The Definition of "Analytic Sets" and the
Borel Isomorphism Theorem

We have two competing definitions of Analytic in play. We claim they are equivalent. Consider
the following theorem:

Theorem A1.1: Let X be a Polish space, and A ⊆ X. The following are equivalent:

1. There is a Polish space Y and a Borel set B ⊆ X ×Y such that A = πB, where π is the first
coordinate projection.

2. There a Borel set B ⊆ X ×X such that A = πB, where π is the first coordinate projection.

Recall that item 1 was taken in section 5 to be our definition for A to be an analytic set in X.
Meanwhile, item 2 is the "implied" definition of analytic from looking at analytic sets in R. We
need new technology to prove this theorem.

Definition A1.2: Let X and Y be Polish spaces, and let f : X → Y . The function f is "Borel mea-
surable" if and only if for every Borel set B ⊆ Y , f−1(B) is Borel in X. f is "Borel bi-measurable"
if and only if f is Borel measurable and for every Borel set B ⊆ X, the image f(B) is Borel in Y .
Finally f is a "Borel isomorphism" if and only if f is a Borel bi-measurable bijection. In this case
we say such X and Y are "Borel isomorphic", and write X ∼=B Y .

The following theorem lives at the center of the theory of stochastic processes.

Theorem A1.3 (Borel Isomorphism Theorem): Let X and Y be Polish spaces. X ∼=B Y if and only
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if X and Y have the same cardinality.

Our technique for proving this theorem fleshes out the ideas in this paper of Rao and Srivas-
tava . We start with some lemmas.

Lemma A1.4: Let X and Y be Polish spaces, and f : X → Y be a be a map such that f−1(U) ⊆ X
is Borel for every open U ⊆ Y . Then f is Borel measurable.

Proof: Consider the following collection of sets in Y :

A := {A ⊆ Y : f−1(A) is Borel in X}

By hypothesis, every open subset of Y is in A. Suppose A ∈ A. We know f−1(Y \A) = X \f−1(A).
It follows that Y \A is in A, so A is closed under complements. Further suppose that {An}n∈N is
a countable collection of sets in A. Then f−1(

⋃
nAn) =

⋃
n f
−1(An). It follows that

⋃
nAn ∈ A,

so A is closed under countable unions. Ergo A is a σ-algebra containing the open sets, so every
Borel set of Y is in A. This proves that for every Borel set B ⊆ Y , we have that f−1(B) is Borel
in X. Hence f is Borel measurable.

Lemma A1.5: Let X be a Polish space. There is a Borel bi-measurable injection from X into
the Hilbert cube [0, 1]ω.

Proof: If X is finite or countable, every x ∈ X is closed. Any subset S ⊆ X can be written
as a an at-most-countable union of closed set, meaning every subset of X is Borel. Since every
finite or closed subset of [0, 1]ω is Borel, we may simple take any injection f : X → [0, 1]ω.

If X is uncountable, let S ⊆ X be a countable dense subset of X, and let d metrize the topology
on X. Without loss of generality, suppose d < 1. Take f : X → [0, 1]ω by:

f(x) :=
(
d(x, s1), d(x, s2), d(x, s3), · · ·

)
where s1, s2, s3, · · · is an enumeration of S. It is easy to see that f is an injection and a homeo-
morphism onto its image. It follows from lemma A1.4 that f is a bi-measurable injection.

Lemma A1.6: The Hilbert cube Iω is Borel isomorphic to the Cantor Space 2ω.

Proof: Let D denote the set of dyadic rationals in [0, 1]. That is, those rational numbers whose
denominators are powers of two when written in lowest terms. Include 0 and 1 in D. Let
f : [0, 1] \ D → 2ω by taking f(x) to be the coefficients of the binary expansion of x. Notice
that the image of f is exactly those sequences in 2ω that are not eventually constant. It is clear
that f is a homeomorphism onto its image.

Let F : [0, 1] → 2ω be any bijection extending f . First, I claim that F is Borel measurable.
Let U ⊆ 2ω be open. Then we may decompose:

F−1(U) = F−1(U ∩ F ([0, 1] \D)) ∪ F−1(U ∩ F (D))

Since F = f on [0, 1] \ D and f is a homeomorphims onto its image, it is clear that F−1(U ∩
F ([0, 1] \D)) is open in [0, 1] \D. On the other hand, since D is countable and F is a bijection, we
have that F−1(U ∩F (D)) is at most countable, and thus is Borel. It easily follows that F−1(U) is
Borel. By lemma A1.4, F is Borel measurable. A virtually identical argument to the above shows
that for any open set U ⊆ [0, 1], the image F (U) is Borel in 2ω. Hence since F is invertible, lemma
gives us that F is Borel bi-measurable.

It follows that there is a Borel bi-measurable bijection Fω : [0, 1]ω → (2ω)ω. We see by Cur-
rying that (2ω)ω is homeomorphic to 2ω×ω, which in turn is homeomorphic to 2ω by the standard
bijection of ω×ω to ω. But it is clear by lemma 5.7 that a homeomorphism is Borel bi-measurable.
By composing, we get a Borel isomorphism from Iω to 2ω.

Lemma A1.7 (Bi-Measurable Cantor-Schroder-Bernstein): Let X and Y be Polish spaces. Suppose
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there are Borel bi-measurable injections f : X → Y and g : Y → X. Then X and Y are Borel
isomorphic.

Proof: For any S ⊆ X, take a set H(S) := X \ g(Y \ f(X)). Now take A0 = ∅, and for each n ∈ N,
take An+1 := H(An). Now set A :=

⋃
nAn. Notice easily that each An is Borel in X, so A is

Borel. Second, notice by elementary set arithmetic that:

H(A) = X \ g(Y \ f(∪nAn)) =
⋃
n

X \ g(Y \ f(∪nAn)) =
⋃
n

An+1 = A

It follows that g(Y \ f(A)) = X \A. So we may define a bijection h : X → Y by:

h(x) =

{
f(x) if x ∈ A
g−1(x) if x ∈ X \A

Since f and g−1 are Borel bi-measurable bijections on the Borel sets A and X \ A respectively, it
follows that h is a Borel isomorphism.

These utility lemmas are all we need to prove the Borel isomorphism theorem.

Proof of Theorem A1.3 (Borel Isomorphism Theorem): Let X and Y be Polish spaces. The
forward direction for the Borel isomorphism theorem is trivial, so we only need to show the reverse
direction. Suppose |X| = |Y |. We have two cases to consider:

Case 1: X is finite or countable. For every x ∈ X, {x} is closed. Any subset S ⊆ X can
therefore be written as an at-most-countable union of closed sets, meaning every subset of X is
Borel. Similarly, every subset of Y is Borel. Take any bijeciton f : X → Y . It follows easily that
f is a Borel isomorphism.

Case 2: X is uncountable. By lemmas A1.5 and A1.6, we may take a Borel bi-measurable in-
jection f : X → 2ω. On the other hand, since X is an uncountable Polish space, Utility lemma
3.9 gives us a homeomorphic embedding g : 2ω → X. By lemma A1.4, it follows that g is a Borel
bi-measurable injection. By bi-measurable Cantor-Schroder-Bernstein (lemma A1.6), we get that
X and 2ω are Borel isomorphic.

Repeating the exact same argument, we get that Y ∼=B 2ω as well. Composing maps gives us
X ∼=B Y .

This completes the proof.

Remark A1.8: As mentioned before, this theorem lies at the heart of Stochastic processes. Most
of the time we are interested in real valued random variables. So let X be such a random variable.
Formally, X is a measurable function from some probability space (Ω,F ,P) to (R,B), where B
denotes the Borel σ-algebra on R. In general, it doesn’t hurt to use Borel σ-fields (and refinements
of them) on Polish spaces as the underlying probability spaces (Ω,F ,P). But we almost always
treat the underlying space as R (For example, when constructing a standard Brownian motion).
The Borel isomorphism theorem explains why we can do this without losing any generality!

Remark A1.9: One may further show that if X and Y are Polish spaces, and f : X → Y is a
Borel measurable bijection, then f is a Borel isomorphism. This result can be found in Kechris’s
book on descriptive set theory.

We may now return to our goal of reconciling the two definitions of analytic. Recall we defined an
analytic set in R as the projection of a Borel set in R × R (definition 5.1), but an analytic set in
a Polish space X as the projection of a Borel set in X × Y where Y is another Polish space. We
stated but had not proved a proposition that resolves this conflict:

Theorem A1.1 (Reprint): Let X be a Polish space, and A ⊆ X. The following are equivalent:

1. There is a Polish space Y and a Borel set B ⊆ X ×Y such that A = πB, where π is the first
coordinate projection.
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2. There a Borel set B ⊆ X ×X such that A = πB, where π is the first coordinate projection.

Proof: It is immediately clear that 2 implies 1, so we only need to prove the other direction. Sup-
pose that A is analytic (in the sense of 1). We have two cases. If X is finite or countable, then
X ×X is a countable Polish space and every subset is Borel. Hence we may take A×X ⊆ X ×X
to be our Borel set and observe that π(A×X) = A.

Now consider the case where X is uncountable. Since A is analytic, there is a Polish space Y
and a Borel set B ⊆ X×Y such that A = πB. By lemma 5.8 and the Borel isomorphism theorem,
we may find a Borel bi-measurable injection f : Y → Z. Now take a function F : X×Y → X×Z by
F (x, y) = (x, f(y)). It is easy to check directly that F is Borel bi-measurable. Hence F (B) ⊆ X×Z
is Borel. It is also clear that πF (B) = A ⊆ X.

12 Appendix 2: The Role of Choice
How does the Axiom of Choice impact this work? What is and isn’t dependent on choice? Without
going into too much detail, let’s discuss some big ideas.

Section 1 (Perfect Sets): non-empty perfect sets in Polish spaces always have cardinality of the
continuum, even without choice. While it’s a little annoying, all the "choice functions" needed can
be stated explicitly.

Sections 2-5 (Perfect Set Property for Closed, Gδ, Borel, and Analytic Sets): The core results
of these sections may be recovered with some effort. For example, Hartogs’s theorem may be used
to recover Lemma 2.5. In particular, we recover that Analytic sets have the Perfect Set Property
in the absence of choice.

Section 6 (Co-Analytic Sets May Not Have the Perfect Set Property): This section demonstrates
an interesting interplay between choice and the Perfect Set Program. Indeed, in when V = L, we
see that there is an uncountable co-analytic set with no non-empty perfect subset. However, V = L
also implies the axiom of choice. Meanwhile, choice fails in Solovay’s model, where all uncountable
sets of reals have non-empty perfect subsets. Choice seemingly allows us to construct sets messy
enough to lack the Perfect Set Property.

Sections 7 and 8 (Vitali Sets, Hamel Bases, and Bernstein Sets): These sections further demon-
strate how choice gets in the way of the Perfect Set Program. In order to show that any of these
three pathological classes of sets exist, we need some form of choice. Choice up to cardinality 2ℵ0

is clearly sufficient.
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