
1 Random graph games

Let’s play a game. Actually, let’s play two different games. Both are about random graphs and their

structural properties. As the author, I get to play the role of the house. Don’t forget that the house always

wins.

A random graph is, unsurprisingly, a randomly generated graph. Start with some vertex set V , and then

for each pair of distinct vertices u, v, flip a coin to determine whether or not there is an edge connecting

them. If the coin comes up heads, we get an undirected edge between u and v. Tails? No edge. There are

more general notions of random graph that allow different edges to be generated with different probabilities,

but we won’t concern ourselves with them.

After flipping a coin for every edge, we have generated a simple, undirected graph with no self-loops or

parallel edges. On the vertex set V = {1, · · · , n}, each pair i, j may or may not have an edge between them,

leading to 2(
n
2) possible different graphs that we could generate. But many of these graphs are essentially

the same — the graphs are identical up to a renaming of the vertices. For example, the graph with a single

edge between vertices 1 and 2 with no other edges is structurally identical to the graph with merely a single

edge between 3 and 4. Try and count how many different graph structures there are on {1, · · · , n}. You’ll

find that it’s much more challenging than counting the number of graphs, but generating functions might

help you out.

A structural property of a graph G is exactly a property that holds for all graphs with the same structure

as G. For example, the properties of “having a 3-cycle”, “being connected”, and “having a clique of k

vertices” are all examples of structural properties. On the other hand, any property that appeals to the

names of the vertices, like “u and v are not joined by an edge”, or “there is a 2-coloring in which u and v

are the same color” are not structural.

We can now state our games.

The infinite game: You name a structural property of a graph, and the house declares whether or not

a random graph on G with vertex set N will or will not have the property. A countable random graph is

generated. If the house is correct, it wins.

The finite game: The finite game is identical to the infinite game, but this time the random graph is large,

but finite. Say, 22
100

vertices.

Will you play? And if so, what structural property will you pick? Analyzing these two games leads us down

a wonderful garden path, seeing some highlights of graph theory, random geometry, first order model theory,

probability, and one of our favorite theorems in all of mathematics.

2 The infinite game and the extension property

Let’s fix some definitions and notations. A graph G = (V,E) is a set of vertices V and a edge relation

E ⊆ V × V . We require the edge relation E to be symmetric (for all u, v ∈ V , we have (u, v) ∈ E =⇒
(v, u) ∈ E) and irreflexive (for all v ∈ V , we have (v, v) ̸∈ E). Thus having (u, v) ∈ E captures having an
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undirected non-self-loop edge between u and v. When (u, v) ∈ E, we will say that u and v are adjacent,

and abbreviate this by u ∼ v.

Given a graph G = (V,E), a subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. That

is, G′ is a graph with some (but not necessarily all!) vertices and edges from G. We write G′ ⊆ G. There is

a different, stronger notion of subgraph. We say that G′ = (V ′, E′) is an induced subgraph of G = (V,E)

if V ′ ⊆ V and E′ = E ∩ (V ′ × V ′). That is, G′ is a subgraph of G with the additional property that for all

u, v ∈ V ′, if u ∼ v in G, then u ∼ v in G′. Alternatively, you can view an induced subgraph as the maximal

subgraph on some selection of vertices.

Given two graphs G = (VG, EG) and H = (VH , EH), a graph morphism f : H → G is a function on

the vertex sets f : VH → VG with the additional property that if u ∼ v in H, then f(u) ∼ f(v) in G.

That is, adjacent edges in H are mapped to adjacent edges in H. Note that the converse need not be true,

since f : H → G can send non-adjacent vertices of H to adjacent vertices of G. We say a graph morphism

f : H → G is an isomorphism if f : VH → VG is a bijection, and has the property that

f(u) ∼ f(v) ⇐⇒ u ∼ v

for all u, v ∈ H. That is, f simply renames the vertices of H, but leaves the structure of the graph unaltered.

When G and H are isomorphic graphs, we write G ∼= H. Finally, a structural property of a graph G is

exactly a property that is true of all graphs G′ such that G′ ∼= G.

Analyzing the infinite game

With these definitions and notations fixed, we can begin analyzing our games. We start with the infinite

game. What does it take to win the infinite game? You’d need the house’s guess about your structural

property to be incorrect. Assuming the house is staffed by very talented mathematicians who know a lot

about random graphs — and don’t forget that I am the house — you’d maximize your chances by picking a

structural property that holds very nearly half the time.

But finding such good structural property is a challenge. For example, let Kn denote the complete graph

on n vertices — n vertices all connected to each other. Would “contains Kn as an induced subgraph” be

a good structural property to bet on? Well, for any collection of n distinct vertices of a countable random

graph, the probability that these vertices form Kn as an induced subgraph is exactly 2
−n(n−1)

2 . For large

n, this is a very very small, but positive, probability. We can partition the vertices of a countable random

graph into countably many disjoint sets of n vertices, each with a positive (and independent!) probability

of forming Kn as an induced subgraph. Just as if you roll a 2
n(n−1)

2 sided die infinitely many times you’re

guaranteed to eventually roll a 1, so too does it follow that a countable random graph is guaranteed to

contain Kn as an induced subgraph. Ok, this is a slight misrepresentation. We should be saying something

like “a countable random graph contains Kn as an induced subgraph with probability 1”. But for the sake

of clarity, we are happy to ignore such details. Anyway, “contains Kn as an induced subgraph” would not

be a good structural property to bet on. The house declares “yes, the countable random graph will have Kn

as an induced subgraph,” and it will be correct every single time.

The previous argument easily generalizes to absolutely any finite graph. We have proved the following:

Proposition 1. A countable random graph contains every finite graph as an induced subgraph. □
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The extension property

Unfortunately for you, we can extend this argument to essentially cover any “finite” structural property.

This is because every countable random graph has a very special property. In a graph G = (V,E), take

disjoint sets of vertices A,B ⊆ V . Let Ex(A,B) denote the collection of vertices that are adjacent to every

a ∈ A, and adjacent to no b ∈ B. That is,

Ex(A,B) := {v ∈ V : v ∼ a for all a ∈ A, and v ̸∼ b for all b ∈ B}.

G has the extension property if Ex(A,B) is non-empty for all finite disjoint sets A,B ⊆ V . We call a

vertex v ∈ Ex(A,B) a witness to the extension property for A and B.

It’s pretty straight forward to see that every countable random graph has the extension property. Fix the

finite disjoint vertex sets A and B. Suppose that there are n and m vertices in A and B respectively. For

any w ̸∈ A∪B, since each edge out of v is determined independently, w witnesses the extension property for

A and B with probability 1
2n+m . As n and m grow big, this probability becomes vanishingly small — but

it’s always positive! And with infinitely many vertices outside of A ∪ B to check, we are again guaranteed

to eventually find a vertex in Ex(A,B).

The extension property is of great import for the infinite game. Not only does it invalidate essentially every

finite structural property as a good bet. It even has huge implications for the wholistic structrue of countable

random graphs. To start getting comfortable with the extension property, we prove two quick propositions.

Proposition 2. Let G be a graph with the extension property. Then G is empty or has infinitely vertices.

This is baked in to the extension property. Given distinct vertices B := {v1, · · · , vn} of G, there is a vertex

w ∈ Ex(∅, B) that is not connected to any vj . Thus if G has n > 0 vertices, it must have n+ 1 vertices. It

follows that if G has any vertices at all, it must have infinitely many.

Proposition 3. Let G be a graph with the extension property. For disjoint finite sets of vertices A,B, the

set of witnesses Ex(A,B) is infinite.

The extension property tells us that Ex(A,B) is non-empty. So pick a witness w1 ∈ Ex(A,B). Now consider

the set Ex(A,B ∪ {w1}). The extension property again ensures that this set is non-empty, so we can select

w2. Further, Ex(A,B ∪ {w1}) is a subset of Ex(A,B), so w2 ∈ Ex(A,B). Iterating this construction and

selecting wn+1 ∈ Ex(A,B ∪ {w1, · · · , wn}) builds an infinite set of witnesses {w1, w2, · · · } ⊆ Ex(A,B). This

proves the proposition.

We already showed that a countable random graph contains every finite graph as an induced subgraph.

Using the extension property, we can prove something much much stronger.

Theorem 4. Suppose that G has the extension property, and H is a finite or countable graph. Then H is

an induced subgraph of G.

Proof: Let H be a countable graph. Denote the vertices of H by {h0, h1, h2, · · · }. We can inductively

pick vertices {g0, g1, g2, · · · } of G such that gi ∼ gj if and only if hi ∼ hj for all i, j ∈ N. We start by picking

any vertex g0 of G. Now suppose we’ve already picked vertices g0, · · · , gn−1 of G such that gi ∼ gj if and

only if hi ∼ hj for all 0 ≤ i, j ≤ n− 1. Set An, Bn ⊆ {g0, g1, · · · , gn−1} by:

gi ∈ An ⇐⇒ hi ∼ hn
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gj ∈ Bn ⇐⇒ hj ̸∼ hn

Now we pick gn to be a witness from Ex(An, Bn). By construction, for i ≤ n − 1 we have that gn ∼ gi if

and only if hn ∼ hi. By induction, we build a set of vertices {g0, g1, g2, · · · } such that gi ∼ gj if and only if

hi ∼ hj . Thus we see that H is an induced subgraph of G. □

So any structural property we want to bet on can’t be a claim about an induced subgraph. Things are starting

to seem hopeless, but there are other properties we can investigate. We haven’t looked at colorability, for

example, or more exotic topological properties like homology and homotopy groups. Before we look at other

properties, let’s pin down a few concrete (read: not random) graphs with the extension property.

Graphs with the extension property

It’s not very hard to find graphs with the extension property. We give you three.

Example 5. Let G be the graph with vertex set N, and an edge between i and j if the j’th bit of the binary

representation of i is 1, or vice versa. G has the extension property.

To prove this, given disjoint sets of natural numbers A = {a1, · · · , an} and B = {b1, · · · , bm}, we must

construct a witness to the extension property. To do this, first pick k = max{a1, · · · , an, b1, · · · , bm}. Now

take

w := 2k+1 + 2a1 + · · ·+ 2an .

The aj ’th binary digit of w is 1 by construction, so w ∼ aj for each j = 1, · · · , n. On the other hand, the

bj ’th binary digit of w is 0 for all j = 1, · · · ,m. Additionally, for all j, we have w > log2(bj), so the w’th

binary digit of bj is 0. Thus w ̸∼ bj . This proves w ∈ Ex(A,B), so G has the extension property.

Example 6. Let G be the graph with vertex set V := {p ∈ N : p is prime and p = 1 mod 4}, and an edge

between p and q if and only if p has a square root modulo q. G has the extension property.

It might not be clear that this edge relation is symmetric. This is a consequence of the law of quadratic

reciprocity.

Theorem 7 (law of quadratic reciprocity). Let p and q be odd primes. The following holds:(
(p = 1 mod 4) or (q = 1 mod 4)

)
⇐⇒

(
(p is a square modulo q) ⇐⇒ (q is a square modulo p)

)
.

Since p and q are both primes congruent to 1 modulo 4, our edge relation is symmetric.

The law of quadratic reciprocity is a famously hard problem. It was a conjecture of Euler, but not a theorem

of Euler! It took the genius of Gauss to prove the result. It’s a bit too much of a detour away from random

graphs to prove it here, but there is a beautiful (and concise!) proof by Veklych [?].

Now that we know the edge relation is symmetric, proving that G has the extension property is easy. Given

disjoint vertex sets A = {a1, · · · , an} and B = {b1, · · · , bm}, we construct a witness to the extension property.

Start by picking values s1, · · · , sn, t1, · · · , tm such that si is a perfect square modulo ai, and tj is not a perfect

square mod bj . By Sunzi’s theorem, there is a solution v to the following system of equations:

x = 1 mod 4
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x = si mod ai for i = 1, · · · , n
x = tj mod bj for j = 1, · · · ,m.

if v is prime, then we’re done! Otherwise, we use Dirichlet’s theorem on arithmetic progressions to

assert that there is some prime p of the form p = v+ k(4a1 · · · anb1 · · · bm) for some k ∈ N. The prime p is a

witness to the extension property.

Example 8. The hereditary finite sets with the symmetrized membership relation “ϵ” has the extension

property.

Let’s unpack that. We start by inductively defining the a collection of sets Vn for each n ∈ N by:

V0 := ∅;

Vn+1 := P(Vn);

V∞ :=
∞⋃

n=0

Vn

where P denotes the powerset operation. The collection V∞ is known as the hereditary finite sets. These

are all the finite sets of finite depth that can be built from the empty set and the powerset operation. We

take the hereditary finite sets to be the vertices of our graph G, with an edge joining x and y if x ∈ y or if

y ∈ x.

Given disjoint vertex sets A = {a1, · · · , an} and B = {b1, · · · , bm}, to construct a witness to the extension

property, pick any hereditary finite set x such that x ̸∈ B and for all z ∈ b1 ∪ · · · ∪ bm, we have x ̸∈ z. Now

consider the set w = {x, a1, · · · an}. This is a hereditary finite set with ai ∈ w for all i = 1, · · · , n. Further,

we have by hypothesis that bj ̸∈ w for all j = 1, · · · ,m. Finally, if w ∈ bj , then x ∈ w ∈ bj , contradicting

our construction of x. Thus w is a witness to the extension property.

3 The Erdős-Rényi-Rado graph

Based on the previous section, it looks like examples of countable graphs with the extension property abound.

The countable random graph has the extension property, as do the three countable graphs we just analyzed.

But we’ve been hiding something from you — these are all the same graph up to renaming the vertices.

Theorem 9. Let G and G′ be countable graphs with the extension property. Then G and G′ are isomorphic

graphs.

Before we prove this theorem, let’s give some commentary. The unique countable graph with the extension

property is known as the Erdős-Rényi-Rado graph, or just the Rado graph for short. In the last section,

we gave three different constructions of the Rado graph. The countable random graph is also the Rado

graph. Note what this means for the infinite random graph game. The flipping of the coin doesn’t matter;

The Rado graph will be generated, and the house will win every time. We warned you! All structural

properties are predetermined, and there are no good properties to bet on. Also, take note that our proof

that the countable random graph has the extension property didn’t actually rely the fact that the coin was

5



fair. If the coin comes up heads with any probability p ∈ (0, 1), then the dealer generates the random graph.

Even though the graph generated by a p = 2−100 coin feels like it should be much more sparse than the

graph generated by the p = .999 coin, it’s the same graph!

Take a moment to think about how weird this is. As n gets larger, the number of different graphs on n

vertices, up to isomorphism, grows exponentially in n. We get more and more graphs until we actually reach

infinity and the number of possibilities collapses to one. It’s really quite shocking the first time you see it.

In some circles, this property of only having one countable structure up to isomorphism with a given property

is known as ω-categoricity. Here, ω is just the ordinal notation for the size of the natural numbers. Another

example of an ω-categorical structure is Q, viewed as an ordered set. If (L,≤) is any other countable

dense ordered set without endpoints, then there is an order preserving bijection between L and the rational

numbers Q. These kinds of properties are quite rare to come across in the wild, but they’re quite valuable.

ω-categoricity results are basically all proved the same way — by the back-and-forth argument. This is

a proof technique that you should be aware of. It doesn’t come up a whole lot, but sometimes it’s the silver

bullet you need.

The back-and-forth argument starts with a pair of countable structures X and Y , and an isomorphism

f0 : X0 → Y0 for finite substructures X0 ⊆ X and Y0 ⊆ Y . Right now, by isomorphism we simply mean

that f0 is a structure-preserving bijection on these subsets. Now pick any x ∈ X \X0 and y ∈ Y \ Y0. We

must show that there are substructures X0 ∪ {x} ⊆ X1 ⊆ X and Y0 ∪ {y} ⊆ Y1 ⊆ Y and an isomorphism

f1 : X1 → Y1 that extends f0. That is, we can add any point to the domain and any point to the codomain,

and extend our partial isomorphism so as to include those points in the domain and range. If you can prove

this, it immediately follows that X and Y must be isomorphic. Just keep going back and forth, extending

the domain and range! After infinitely many steps (and secretly a transfinite induction), you will have built

an isomorphism f : X → Y . Let’s do it explicitly for the Rado graph.

Proof of theorem 9: Suppose G and H are countable graphs with the extension property. Let G0 ⊆ G

and H0 ⊆ H be finite induced subgraphs of G and H, and let f0 : G0 → H0 be an isomorphism. Let u be a

vertex in V (G) \ V (G0) and v
′ be a vertex in V (H) \ V (H0). We must pick an image for u and a preimage

for v′.

To pick an image for u, we use the extension property. Partition the vertices of V (G0) = A∪B, where u ∼ a

for every a ∈ A, and u ̸∼ b for every b ∈ B. Since f0 is an isomorphism, we may partition the vertices of H0

into f0(A)∪ f0(B). By the extension property, we may pick a vertex u′ of H which is joined to every vertex

in f0(A) and to no vertex in f0(B). We select u′ to be the image for u.

To pick a preimage for v′, we again use the extension property. Partition the vertices of H0∪{u′} into C∪D,

where v′ is adjacent to every vertex in C and to no vertex in D. Since f0 is an isomorphism, f−1
0 (C)∪f−1

0 (D)

partitions the vertices of G0∪{u}. By the extension property, we may pick a vertex v of G adjacent to every

vertex in f−1
0 (C) and to no vertex in f−1

0 (D). We select v to be the preimage of v′.

Let G1 be the induced subgraph of G with vertices V (G1) = V (G0)∪{u, v}. Similarly, let H1 be the induced

subgraph of H with vertices V (H1) = V (H0) ∪ {u′, v′}. Now extend our map f0 to f1 : G1∪ → H1 defined

by:

f1(u) = u′

f1(v) = v′
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f1
∣∣
G0

= f0

By the way we chose u′ and v, it is clear that f1 is an isomorphism. □

Other infinite random graph games?

So the infinite game is a bust. We’ve revealed the ace up our sleave, and you’ll never play against us. But

what if we changed the game to use some other infinite set of vertices? For example, what if we generated

the random graph on R instead of N?

Don’t get confused about what Theorem 9 is saying. The Rado graph is not the only infinite graph with the

extension property. There are graphs with λ-many vertices that have the extension property for any infinite

cardinality λ. The crux of the argument is that given any graph G0 = (V0, E0), we can build a graph G

that satisfies the extension property by adding |V0|-many vertices to G0. To do this, we build a sequence of

subgraphs G0 ⊆ G1 ⊆ G2 ⊆ · · · . The graph Gn+1 is constructed from Gn := (Vn, En) by adding a vertex

vX for every finite set of vertices X ⊆ Vn. The edges of En+1 has every edge from En, plus edges connecting

vX to every vertex x ∈ X. Finally, we set G :=
⋃

n∈NGn to be the limit of these graphs, and call it the

extension closure of G0. To see that |V | = |V0|, note that we add |V0|-many vertices at every stage of the

construction. There are countably many stages, so the vertex set of G has the same cardinality as the vertex

set of G0. To see that G has the extension property, take disjoint finite sets of vertices A,B of G. Since A

and B are finite, there is some n ∈ N such that every vertex in A ∪ B is in Gn. By construction, there is

a vertex vA ∈ Gn+1 ⊆ G such that vA is adjacent to every a ∈ A, but to none of the vertices in B. Thus

vA ∈ Ex(A,B).

The extension closure can further be used to show that for every cardinality λ > |N|, there are graphs G,G′

with λ-many vertices, both with the extension property, such that G ̸∼= G′. For example, let Iλ be the

edgeless graph with λ-many vertices, and let Kλ be the complete graph with λ-many vertices. Consider

the extension closures Iλ and Kλ. These graphs cannot be isomorphic, because Iλ does not contain Kλ

as an induced subgraph. Let W be any collection of λ-many vertices from Iλ. We claim that there are

vertices u, v ∈ W that are not adjacent. To see this, note that there must be a pair of vertices u, v ∈ W

that were added at the same stage of the construction of the extension closure of Iλ. By construction, these

vertices cannot be adjacent. SinceW was arbitrary, the graph Iλ cannot contain Kλ as an induced subgraph.

However, Kλ clearly does contain Kλ as an induced subgraph, so Iλ ̸∼= Kλ.

The two preceding paragraphs demonstrate that the magic of the Rado graph only happens for countable

graphs. If you play the random graph game on an uncountable vertex set, the house is not guaranteed to

generate the same graph every time. So, game on? Unfortunately, no. Game not on. Game still off. Talk-

ing about such uncountable random graphs is probabilistically problematic. In generating an uncountable

random graph, we’re taking the intersection of uncountably many independent events that determine the

adjacency structure. The modern framework of probability is able to elegantly handle countable intersec-

tions, but things get weird with uncountable intersections. Part of this weirdness is structural, and baked

into the Kolmogorov axioms and the definition of “probability itself”. The other part of this weirdness is

purely arithmetic — an uncountable product of numbers strictly between zero and one is always zero, giving

no nontrivial probabilities. But if we somehow found a way to make probabilistic sense of an uncountable

random graph, I’ll be waiting for you at the felt-top table between the poker room and the penny slots.
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4 Properties of the Rado graph

Before we analyze the finite game, we take a detour into the properties of the Rado graph. It’s a really cool

graph, with some mind boggling properties. And if you open your own casino where you get to be the house,

you’ll need to know what to say when some patsy comes in and starts rattling off structural properties.

At this point we know that the Rado graph R = (VR, ER) is the unique countable graph with the extension

property, and contains every countable subgraph as an induced subgraph. But what does it look like? What

properties does it have? While we gave a few different explicit descriptions of R, these characterizations

are pretty opaque. We certainly can’t tell when two primes p and q are quadratic residues with residues

with respect to each other just by looking. But we can use the extension property to prove a variety of

characterizing properties of R. For example, a graph is connected if you can walk from any vertex to any

other along edges of the graph. Is R connected? Well of course it is. The vertices u and v are connected by

the path through any w ∈ Ex({u, v},∅).

Cliques

A clique in R is a collection of vertices C ⊆ VR such that every pair of vertices in C are adjacent. Call a

clique C maximal if for any other clique C ′ such that C ⊆ C ′, we have C = C ′. Let v be a vertex of R,

and let Cv be a maximal clique containing v. This maximal clique isn’t unique, but it does exist. By the

extension property, we know that Cv is infinite. Since there are infinitely many vertices that aren’t adjacent

to v, it follows that there are infinitely many disjoint infinite cliques in R. A similar argument shows that

there are infinitely many disjoint infinite independent sets of vertices.

Colorings

The extension property also can be used to show that the Rado graph is hard to color. An n-coloring of a

graph G = (V,E) is a function c : V → {1, · · · , n} such that if v ∼ w, we have c(v) ̸= c(w). We think of the

codomain {1, · · · , n} as a set of n different colors. The function c assigns a color to each vertex such that no

two adjacent vertices share the same color. By the extension property, R is not n-colorable for any n ∈ N.
To see this, suppose that c : VR → {1, · · · , n} is an n-coloring. Without loss of generality, suppose that c

is surjective. Pick vertices v1, · · · , vn such that c(vi) = i. By the extension property, there is some vertex

w ∈ Ex({v1, · · · , vn},∅). What color can be assigned to w? We would need an (n + 1)’th color for w — a

contradiction.

On the other hand, the Rado graph is trivially ω-colorable. Simply assign each vertex it’s own color.

Self-similarity

The Rado graph is highly self-similar. In particular, it is isomorphic to many different subgraphs and

supergraphs of itself. A finite vertex pruning of R is a subgraph R′ ⊆ R obtained by deleting finitely

many vertices of R, and all the edges connected to the deleted vertices. Given such a vertex pruning R′ ⊆ R,

it is clear that R′ still has the extension property. It follows that R′ ∼= R. Similarly, adding or deleting
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finitely many edges in the Rado graph will give you another isomorphic copy of the Rado graph. The

strongest result in this vein is that the Rado graph has the pigeonhole property. A partition of a graph G is

a pair of induced subgraphs, covering all the vertices of G, with no edges connected the induced subgraphs.

That is, a partition of G = (V,E) is a pair of induced subgraphs G1 = (V1, E
∣∣
V1
) and G2 = (V2, E

∣∣
V2
) such

that V1 ∪V2 = V and V1 ∩V2 = ∅. A graph G is said to have the pigeonhole property if for any partition

(G1, G2), either G1
∼= G or G2

∼= G. For example, the complete graph on N (denoted KN) and the edgeless

graph on N (denoted IN) both have the pigeonhole property.

Proposition 10. The Rado graph has the pigeonhole property.

Proof: We proceed by contradiction. Suppose (R1, R2) is a partition of the Rado graph R such that neither

R1 nor R2 is isomorphic to R. It follows that neither R1 nor R2 can have the extension property. We may

pick finite disjoint sets of vertices A1, B1 ⊆ V1 and A2, B2 ⊆ V2 such that ExR1(A1, B1) and ExR2(A2, B2)

are both empty. Here, the subscripts on Ex are keeping track of which graph we’re working in. Since R has

the extension property, we may find a witness:

w ∈ ExR(A1 ∪A2, B1 ∪B2).

Now which subgraph is the vertex w in? If w ∈ V1, then w would necessarily be a witness in ExR1
(A1, B1).

Similarly, if w ∈ V2, then w would necessarily be a witness in ExR2(A2, B2). In either case, we have a

contradiction. □

Perhaps surprisingly, these three graphs — the countable clique KN, the countable edgeless graph IN, and

the Rado graph R — are the only countable graphs with the pigeonhole property up to isomorphism. To

see this, let G = (VG, EG) be a countable graph with the pigeonhole property. Call a vertex v ∈ V isolated

if it is adjacent to no other vertex, and universal if it is adjacent to every other vertex. Partition G into

(I, L, U), where I is the induced subgraph of all the isolated vertices of G, U is the induced subgraph of

all the universal vertices of G, and L is the induced subgraph on every vertex that is neither universal nor

isolated. By the pigeonhole property, exactly one of these graphs is isomorphic to G, and the other two are

empty. In particular, if G ∼= I, then every vertex of G is isolated, and U = L = ∅. Similarly, if G ∼= U , then

every vertex of G is universal, and I = L = ∅. Finally, if G ∼= L, then G has no universal vertices and no

isolated vertices, and I = U = ∅.

Now suppose that G fails to have the extension property. Let A,B be disjoint finite sets of vertices such that

ExG(A,B) = ∅. Suppose we partition A = A1 ∪A2 and B = B1 ∪B2, allowing the possibility of Ai = ∅ or

Bj = ∅. Let G1 and G2 be the induced subgraphs of G with vertex sets

V1 := A1 ∪B1 ∪ (VG \ (Ex(A1, B1) ∪A2 ∪B2))

V2 := A2 ∪B2 ∪ (VG \ (Ex(A2, B2) ∪ V1).

By design, G1 and G2 form a partition of G, so one of these graphs is isomorphic to G by the pigeonhole

property. Since the partition was arbitrary, we can pick a partition where one of A,B are empty, and the

other is a singleton. That is, there is a vertex v ∈ VG for which Ex(v,∅) = ∅ or Ex(∅, v) = ∅. In the first,

case, v is an isolated vertex, making G ∼= IN. In the second case, v is a non-isolated vertex, making G ∼= KN.

There are many other wonderful properties of the Rado graph that we can’t get into here. But we will make

some suggestions for further reading at the end of the chapter.
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5 The finite game and first order properties of graphs

We now shift our analysis toward the finite game. This time, we do have a game on our hands. For example,

consider the property “has at least k edges” as a structural property. For k = 1, our enormous finite

random graph with 22
100

vertices could fail to have any edges, but the probability is negligible. Similarly, for

k = (22
100

choose 2), our enormous random graph theoretically could have every possible edge, but in the same

way that we theoretically could quantum tunnel our way to China. In the middle, at k = 1
2 (2

2100choose 2),

the probability is exactly 1/2.

This argument, while accurate to the way we presented the finite random graph way back in the introduc-

tion, goes against the spirit of the game. True gamblers know that gambling isn’t about the money, but

sportsmanship. The issue is that “has at least 1
2 (2

2100choose 2)” being a good bet is an artifact of our specific

choice for the number of vertices. If you made this bet and the house said “oops, we’re sorry. We meant

22
2100

vertices, not 22
100

,” you would have made a very bad choice for your structural property. The point of

the finite random graph game is to bet on the behavior of arbitrarily large (but still finite!) random graphs.

Not on random graphs of a specific size.

On the other hand, consider the property “has an even number of edges”. In this case, for any large N , the

probability that a random graph on N vertices has an even number of edges is exactly 1/2. This property

doesn’t violate the spirit of the game, and would make for a good bet.

How do we distinguish good, honorable bets from implementation specific nonsense? You’d like to put a

uniform distribution over large numbers, but of course there is no such distribution. Instead, we can leverage

the notion of density. For a given property, let µN denote the probability that a random graph on N vertices

has the property. We’re interested in the limit limN→∞ µN . This essentially captures the probability that

an arbitrarily large graph has the desired property. Looking back, we see that the properties “has at least
1
2

(
k
2

)
edges” and “has an even number of edges” have densities of 0 and 1/2 respectively.

So are we done? We found a good bet for the finite random graph game. Fortunately, we’re only just

beginning our analysis of the finite game. What’s interesting about the finite game isn’t that there is a

winning bet, but which bets could plausibly be winners. For example, what if we restrict ourselves to so-

called “first order” properties of graphs? While most structural properties of graphs are not first order, the

first order properties are well behaved in ways that allow us to prove a miraculous result called the zero-

one law for finite graphs. Every structural property carves the collection of finite graphs into two pieces:

the graphs that have the property, and the graphs that don’t. The zero-one law says that for first order

properties, this partition is boring — one piece will contain almost every graph in the sense of density. In

order to prove this incredible theorem, we’ll need to do a quick tour through some foundational results in

mathematical logic.

First order properties

So what exactly is a first order property? A first order property ϕ, also known as a first order sentence,

is a true/false statement about a graph built up from finitely many of the following pieces:

1. universal quantification over vertices ∀v (read “for all vertices v”);
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2. existential quantification over vertices ∃v (read “there exists a vertex v”);

3. the edge relation x ∼ y (read “vertex x is adjacent to vertex y”);

4. conjunction, ∧ (read “and”);

5. disjunction, ∨ (read “or”);

6. implication, =⇒ (read “implies”);

7. equality, = (read “equals”);

8. negation ¬ (read “not”).

We also highlight what you can’t use in a first order property. You can’t quantify over edges directly —

only over vertices. That is, there’s no way to directly say “there exists an edge”. However, this can be

circumvented by cleverly quantifying over vertices and using the edge relation. For example, the property

ϕ := ∃x∃y(x ∼ y) (read “there are vertices x and y such that x is adjacent to y”) is semantically equivalent

to having an edge. The other important thing you can’t do is quantify over sets of vertices. That is, you

can’t say that there is a set of vertices with some property, or that for all sets of vertices, some property

holds. Some example will make things more clear.

Example 11. The following are first order properties of graphs, with there formal characterizations:

• There are two distinct vertices:

∃x∃y(x ̸= y)

(read “there are vertices x and y such that x ̸= y”);

• Every vertex is adjacent to exactly one vertex:

∀x∃y((x ∼ y) ∧ (∀z((x ∼ z) =⇒ (z = y))))

(read “for all vertices x, there is a vertex y such that x ∼ y, and if z is any other vertex adjacent to x,

then z = y”);

• The four cycle is a subgraph:

∃a∃b∃c∃d((a ∼ b) ∧ (b ∼ c) ∧ (c ∼ d) ∧ (d ∼ a))

(read “there are vertices a, b, c, d such that a ∼ b, b ∼ c, c ∼ d, and d ∼ a);

• The four cycle is an induced subgraph:

∃a∃b∃c∃d((a ∼ b) ∧ (b ∼ c) ∧ (c ∼ d) ∧ (d ∼ a) ∧ ¬((a ∼ c) ∨ (b ∼ d)))

(read “there are vertices a, b, c, d such that a ∼ b, b ∼ c, c ∼ d, and d ∼ a), and neither a ∼ c or b ∼ d);

• The four cycle is not a subgraph:

¬∃a∃b∃c∃d((a ∼ b) ∧ (b ∼ c) ∧ (c ∼ d) ∧ (d ∼ a))

(read “there are not vertices a, b, c, d such that a ∼ b, b ∼ c, c ∼ d, and d ∼ a);

11



• More generally, the presence (or non-presence) of any finite graph as an (induced) subgraph is a first

order property by similarly specifying vertices and adjacencies;

• There are exactly n vertices:

∃v1∃v2 · · · ∃vn

∧
i ̸=j

¬(vi = vj)

 ∧ ∀w

(
n∨

i=1

(w = vi)

)
(read “there are vertices v1, · · · vn such that vi ̸= vj for all i ̸= j, and every vertex w is equal to one of

the vi”);

• Fix n,m ∈ N. For all disjoint finite sets of vertices A = {a1, · · · , an} and B = {b1, · · · , bm}, there is

a witness w ∈ Ex(A,B):

En,m := ∀a1 · · · ∀an∀b1 · · · ∀bm
(((∧

i,j

¬(ai = bj)

)
∧
(∧

i ̸=j

¬(ai = aj)

)
∧
(∧

i ̸=j

¬(bi = bj)

))

=⇒ ∃w
(( n∧

i=1

w ∼ ai

)
∧
( m∧

j=1

¬(w ∼ bj)

)))
.

This sentence is very long, and we encourage you to try to understand why it encodes the extension

property for specific sizes of A and B. This first order property is important enough that we give it a

name: En,m is the (n,m)-extension property.

Example 12. The following are not first order properties:

• While having any finite graph as an (induced) subgraph is a first-order property, the same is not true

for infinite subgraphs. For example, having an infinite clique is not a first order property. To try and

state this in the restricted language of first order properties we’d need to use infinitely many existential

quantifiers.

• Having finitely many vertices is not a first order property. While having exactly n vertices is a first

order property, there is no way to pick out “finiteness” in a single sentence. Let Fn be the first order

property we defined above that corresponds to having exactly n vertices. You might try and define

finiteness as a first order property by “∃n(Fn),” but we can’t do this! The natural number n isn’t a

vertex, so we can’t apply an existential quantifier to it. What about “F0 ∨ F1 ∨ F2 ∨ · · · ”? Again, this

isn’t a valid first order property, as every first order sentence has finite length.

• Since a graph has infinitely many vertices if and only if it doesn’t have finitely many vertices, the

property of having infinitely many vertices is not first order.

• Similarly, even though the (n,m)-extension property is a first order property for all n,m ∈ N, the

extension property is not. We can’t do universal quantification over n and m and make the extension

property a first order property. However, we can say that a graph G has the extension property if and

only if it has the (n,m)-extension property for all pairs n,m ∈ N. Thus having the extension property

is equivalent to satisfying an infinite family of first order properties.

• Being 2-colorable (or n-colorable more generally) is not a first order property. To define a two coloring

as a first order property, you might try to show the graph is bipartite. That is, the vertices can be

partitioned into two disjoint sets X and Y such that no two vertices in X are adjacent, and no two

vertices in Y are adjacent. But this kind of reasoning can’t be accommodated in the first order world!

We can’t quantify over subsets of vertices — only over single vertices.
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• Being connected is not a first order property. Say that two vertices u and v in a graph G are d-far apart

if the shortest path from u to v uses d edges of G. So every vertex is 0-far from itself, and adjacent

vertices are 1-far apart. While “all vertices are no more than d-far apart” is a first order property,

there is no way to assemble these into a first order sentence that exactly captures connectedness.

So as you can see, first order properties are pretty restrictive. Most “natural” structural properties of graphs

are not first order. But what we lose in expressiveness we gain ten-fold in behavior. In the coming sections,

we will frequently rely on the logical properties of first order properties to prove incredible results about

random graphs.

Going forward, when discussing structural properties of graphs, we will generally reserve lower-case Greek

characters for first order properties, while we use upper case Greek characters for arbitrary (not necessarily

first order) properties.

Elementary equivalence

Given a graph G and a first order property ϕ, the property ϕ is either true or not true of G. If ϕ is true of G,

we say G satisfies ϕ, and write G ⊨ ϕ. We reserve this vocabulary and notation for first order properties.

Since “not” is in our first order vocabulary, we see that G does not satisfy ϕ if and only if G satisfies ¬ϕ.
Often times, it is convenient to only consider graphs up to their first-order properties. We say that two

graphs G and G′ are elementarily equivalent, written G ≃ G′, if they satisfy exactly the same first order

properties.

Clearly if G and G′ are isomorphic, they are elementarily equivalent, but is the converse true? Or can

non-ismomorphic graphs be elementarily equivalent? Let G and G′ be elementarily equivalent graphs. First,

notice that since “has n vertices” is a first order property, either G and G′ are both finite with the same

number of vertices, or they’re both infinite. Since every graph is a subgraph of itself, and ”contains the finite

graph H as a subgraph” is a first order property, if G and G′ are finite graphs, they both must be subgraphs

of each other. Consequently, for finite graphs, G′ ≃ G =⇒ G ∼= G′. On the other hand, things get a little

more weird when G and G′ are infinite graphs.

Theorem 13 (Löwenheim–Skolem for graphs). Let G = (V,E) be a graph with an infinite vertex set V . Let

λ ≥ |N| be any infinite cardinality. There is a graph G′ with λ-many vertices such that G ≃ G′.

This is a special case of a deep theorem of mathematical logic called the Löwenheim–Skolem theorem.

Proving this theorem, even for graphs, is quite beyond the scope of this chapter. While the upward part of

the theorem, that shows we can find a bigger infinite graph elementarily equivalent to G, the downward part

is very tricky and requires a deep understanding of first order logic. However, we can try to give you a little

intuition for why it’s true. We already saw that the first order lens has a hard time separating finite graphs

from infinite graphs. Recall that Fn was the first order property of having exactly n vertices. We asserted

that “infinite-ness” is not a first order property. However, we can say that a graph G is infinite if and only

if G ⊨ ¬Fn for all n ∈ N. There might not be a single first order sentence corresponding to infinite-ness,

but we can hold infinity in our hands with the infinite collection of sentences {¬F0,¬F1,¬F2, · · · }. When it

comes to distinguishing different infinite cardinalities on the other hand, we can’t even grope at the concept.

Since every first order sentence is finite in length and can quantify over at most finitely many vertices of
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a graph, there isn’t even an infinite family of sentences that can distinguish countable from uncountable

graphs. There is simply no way to tell infinite cardinalities apart.

Since the first order world lacks the tools to distinguish infinite cardinalities, given an infinite graph G, there

is no fundamental barrier to having elementarily equivalent graph G′ of a different infinite size. And indeed,

by carefully picking our vertices and edges, we can always show that such graphs exists. This theorem has

an important corollary.

Corollary 14. Let G and G′ be graphs. If G and G′ both have the extension property, then G and G′ are

elementarily equivalent.

Proof: It suffices to show that if G is a graph with the extension property, then G is elementarily equivalent

to the Rado graph R. Note that G has the extension property if and only if G ⊨ En,m for all n,m ∈ N. By
the Löwenheim–Skolem theorem for graphs, there is a countable graph C such that G ≃ C. Thus C satisfies

the (n,m)-extension property for all n,m ∈ N, so C has the extension property. By Theorem 9, C must be

isomorphic to the Rado graph R. Isomorphism implies elementary equivalence, ergo G ≃ C ≃ R. □

Maybe now you’re starting to get an inkling of where we’re going. Suppose G is a graph with the extension

property. Even though G could have any infinite cardinality, and there are structural properties (like having a

clique of certain infinite size) that G may-or-may-not have, every first order property of G is fully determined.

Once you know that G has the extension property, you know every single first order sentence ϕ such that

G ⊨ ϕ. Namely, they’re exactly the same first order sentences that the Rado graph R satisfies.

Completeness and entailment

We take a moment to recast Corollary 14 in slightly different language. We aren’t going to prove anything

new in this subsection, but merely look at this result from a different perspective.

Let I be a (possibly infinite) index set, and let T := {ϕi : i ∈ I} be a collection of first order sentences.

In the world of mathematical logic, T is commonly called a first order theory, but we will try to avoid

this language so as to avoid overburdening you with new nouns. Let Ψ be some (not necessarily first order)

property. We say that Ψ is entailed by T if whenever a graph G ⊨ ϕi for all i ∈ I, we also have that Ψ is

true of G. Let’s look at a few examples before we proceed.

Example 15. Let T := {ϕi : i ∈ I}. Each ϕi is entailed by T .

Example 16. Let ϕ be a first order property, and let T := {ϕ,¬ϕ}. Every property Ψ is entailed by T .

There is no graph G such that G ⊨ ϕ and G ⊨ ¬ϕ. Consequently, every property Ψ is entailed vacuously.

This is commonly known as the semantic principle of explosion.

Example 17. Recall that Fn denotes the first order sentence that denotes having exactly n vertices. Let

T := {¬F0,¬F1,¬F2, · · · }. The property of having infinitely many vertices is entailed by T .

Example 18. Connectedness is entailed by E2,0.

Sometimes, a collection of sentences T := {ϕi : i ∈ I} will entail every first order property or its negation.

That is, for every first order property ψ, either ψ or ¬ψ is entailed by T . In this case, we call T complete.
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Note that for T to be complete does not require that ψ ∈ T or ¬ψ ∈ T for every first order ψ. For example,

we’ve already seen that {ϕ,¬ϕ} is complete. Let’s look at a more interesting example.

Theorem 19 (TEx complete). TEx := {En,m : n,m ∈ N} is complete.

This is just a reframing of Corollary 14. If a graph G satisfies En,m for all n,m ∈ N, then G has the extension

property. It follows that G is elementarily equivalent to the Rado graph, so all first order properties are

entailed by TEx.

Compactness

We end this section with one last important aspect of first order properties. A few pages ago, we gave a

bunch of examples of structural properties of graphs that are not first order. You might have noticed that

we didn’t actually prove that these properties aren’t first order. We had two reasons for doing so. First, we

believe it’s far more important for you, the reader, to walk away from this chapter with an internal sense of

what kinds of properties aren’t first order than it is for you to walk away knowing how to prove something

isn’t first order. Second, while it’s easy to prove that a property is first order (just write down a sentence!),

it’s much harder to prove a property isn’t first order. How do you know there isn’t some clever way to write

down “G has infinitely many vertices” as a first order sentence? Clearly you can’t — the first order language

isn’t expressive enough. But there are infinitely many first order sentences. How would you prove there isn’t

some sentence, with hundreds of trillions of quantifiers, that somehow manages to be satisfied by G if and

only if G has infinitely many vertices? There’s a standard trick.

Theorem 20 (Compactness for graphs). Let ψ be a first order property entailed by a collection of first order

sentences T . There is a finite subset T0 ⊆ T such that ψ is also entailed by T0.

Like Theorem 13, this is another special case of a deep result in mathematical logic called the compactness

theorem. Before we discuss why this theorem is true, let’s look at some consequences. As we promised,

compactness can be used to prove that certain properties are not first order properties. For example, let’s

look at infinite-ness and the extension property.

Proposition 21. There is no first order sentence ϕ∞ such that G ⊨ ϕ∞ if and only if G is an infinite graph.

Proof: For sake of contradiction, suppose there was such a ϕ∞. Recall that Fn denotes the first-order

sentence that says “G has exactly n vertices.” The sentence ϕ∞ would be entailed by the collection of

sentences {¬F0,¬F1,¬F2, · · · }. By compactness, there would be some finite subcollection {¬Fn1
, · · · ,¬Fnk

}
that also entails ϕ∞. But these sentences are satisfies by finite graphs that don’t have nj-many vertices for

each j = 1, · · · , k. This is a contradiction, so ϕ∞ cannot exist. □

Proposition 22. There is no first order sentence ϕEx such that G ⊨ ϕEx if and only if G has the extension

property.

Proof: This is barely harder than the previous example. If there were such a first order sentence ϕEx, it

would be entailed by TEx, and by some finite subset {En1,m1
, · · · , Enk,mk

} ⊆ TEx. But it’s easy to see that

there are finite graphs — which necessarily cannot have the extension property — that satisfy Enj ,mj
for

each j = 1, · · · , k. The the extension property is not a first order property. □
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Similar arguments can be made to show that connectedness and being cycle-free (AKA being a tree) are not

first order properties.

Okay, so why is the compactness theorem true? Unlike the Löwenheim-Skolem theorem, we will actually

sketch a proof of the compactness theorem for graphs. But first, some history. Originally, the compactness

theorem for first order logic was viewed as a corollary toGödel’s completeness theorem. That’s not a typo

— in addition to the famous incompleteness theorem, Gödel also proved a result called the completeness

theorem. Yes it’s confusing nomenclature. No these theorems don’t contradict each other. Anyway, the

classical argument for the compactness theorem goes as follows. If ψ is a first order property entailed by a

collection of first order sentences T , then ψ can be proved from T . This is no different than how in a first

linear algebra class, you proved that all vector spaces (read: things that satisfy the collection of sentences

corresponding to the vector space axioms) have a certain property by writing a proof that that property can

be proven from the vector space axioms. The fact that you can always find a proof of the entailment is the

crux of Gödel’s completeness theorem. Now that proof of ψ is, in essence, a finite list of logical deductions.

Each deduction can appeal to at most a finite number of sentences in T , so in total, only finitely many

properties from T are used in the proof. Gather up these finitely many sentences, and put them in a box

called T0. Bam. ψ is also entailed by the finite set T0. Compactness is proven.

This proof isn’t very satisfying. First, unless we now separately justify the completeness theorem (really?

every entailment can be proven? And what exactly do we mean by a “finite list of deductions”?), all we’ve

done is replace one foundational theorem of mathematical logic with another. Second, the compactness

theorem is, at its core, a semantic theorem. The compactness theorem for graphs is about what is true about

graphs, not about what we can prove about graphs from the definition of a graph. Compactness simply has

nothing to do with proofs, syntax, and deduction per se. This is the perspective taken by contemporary

model theorists, and they have devised a multitude of purely semantic proofs of the compactness theorem.

We sketch one such proof in Section 7.

6 The Zero-One Law for Finite Graphs

We finally arrive at the pièce de résistance of the chapter — the zero-one law for finite graphs. Here’s the

idea. Let G(N) denote a random graph on N vertices, with each edge generated independently with a fair

coinflip1. Earlier in this chapter, when we analyzed the infinite random graph game we saw that

P[G(N) = R] = 1

where we understand G(N) to be the random graph on countably many vertices. For all finite N , though, a

panopoly of different random graphs are possible. How likely is G(N) to have a certain property, and how

does this change as N changes? Let’s look at a few examples. We already have two:

Example 23. Let µN and νN denote the probabilities that G(N) has an even number of edges, and at least
1
2

(
N
2

)
edges respectively. As N → ∞, both µN and νN converge to 1

2 .

Both of these properties are not first order. This is trivial for the property of having at least 1
2

(
N
2

)
edges

(this requires an appeal to the number of vertices), but the other is a little trickier. Hint: it follows yet again

from compactness. So what if we focus in on first order properties? A few more examples will help.

1everything in this section, including the zero-one law can be extended random graphs generated by coins with arbitrary

probability 0 < p < 1, but we stick to fair coins for simplicity.
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Example 24. Let µN denote the probability that G(N) is a complete graph. As N → ∞, we have µn → 0.

The probability that G(N) is complete is given exactly by µN = (1/2)(
N
2 ). As N → ∞, this quantity goes

to zero. We capture this statement about density by saying that G(N) is asymptotically almost never

complete.

Example 25. Let µN denote the probability that G(N) has the (r, s)-extension property for fixed r, s ∈ N.
As N → ∞, we have µN → 1.

Suppose N > a + b. For disjoint collections of vertices A,B with |A| = r and |B| = s, let v be a vertex of

G(N) not in A ∪B. The probability that v is a witness in Ex(A,B) is exactly (1/2)r+s. It follows that the

probability that Ex(A,B) is empty is given by

P[Ex(A,B) = ∅] =
(
1− (1/2)r+s

)N−(r+s)
.

There are
(
N
r

)(
N−r
s

)
ways to pick such vertex sets A and B, so we see

P[G(N) ̸⊨ Er,s] ≤
(
n

r

)(
n− r

s

)(
1− (1/2)r+s

)N−(r+s)
.

As N → ∞, the expression on the right hand side goes to zero. It follows that as N → ∞, the probability that

G(N) satisfies Er,s goes to 1. We say that G(N) asymptotically almost surely has the (r, s)-extension

property.

Both of these examples of first order properties have “trivial” densities of zero and one. If you play around

and compute the densities of other first order properties ϕ, you will surely find that like in the examples

above, you always get convergence to zero or one. The property of having a specific induced subgraph?

Asymptotically almost surely happens. The property of having an isolated vertex or a universal vertex?

Asymptotically almost never. It always plays out in one of these two ways. This observation leads us to the

zero-one law for finite graphs.

Theorem 26 (Zero-one law). Let ϕ be a first order property. G(N) satisfies ϕ asymptotically almost surely

or asymptotically almost never.

There’s also a simple procedure for determining whether ϕ holds asymptotically almost surely or almost

never: simply check if the property is true of the Rado graph R. If R ⊨ ϕ, then G(N) asymptotically almost

surely satisfies ϕ. Don’t get confused here — this procedure only works for first order properties ϕ. There

are non-first order properties of R that do not hold asymptotically almost surely for G(N). To pick an easy

example, the property of having an infinite clique.

To head off another potential point of confusion, the converse to the zero-one law isn’t true. That is, if

ϕ is a property that holds asymptotically almost surely or almost never, it does not follow that ϕ is first

order. For example, G(N) is asymptotically almost surely connected. If a graph satisfies the (2, 0)-extension

property, it has to be connected. Since the (2, 0)-extension property holds asymptotically almost surely, it

follows that limN→∞, we have P[G(N) is connected] → 1. Nonetheless, compactness can be used to show

that connectivity isn’t a first order property.

Proof of theorem 26: Believe it or not, we’ve already done almost all of the work to prove the zero-one

law for graphs. We’ve already given you all the pieces — they just need to be assembled. To start, let ϕ be

a first order property. We have two cases to consider: whether R ⊨ ϕ, or R ̸⊨ ϕ.
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We first consider the case where R ⊨ ϕ. We must show that ϕ holds asymptotically almost surely for G(N).

Completeness (Corollary 19) tells us that ϕ is entailed by the collection of first order properties TEx := {En,m :

n,m ∈ N}. By compactness (Theorem 20), ϕ is entailed by a finite subcollection {En1,m1
, · · · , Enk,mk

} ⊆ TEx.

And from Example 25, we know for each j = 1, · · · , k, that Enj ,mj holds asymptotically almost surely for

G(N). Some basic probability proves that the conjunction

ψ := En1,m1 ∧ En2,m2 ∧ · · · ∧ Enk,mk

holds asymptotically almost surely. But for any graph G, if G ⊨ ψ, then G ⊨ ϕ. So 1 ≥ P[G(N) ⊨ ϕ] ≥
P[G(N) ⊨ ψ]. We already proved that ψ holds asymptotically almost surely, so ϕ holds asymptotically almost

surely as well.

We now consider the case that R ̸⊨ ϕ. This is covered by the first case with just a small sleight of hand.

Simply observe that R ̸⊨ ϕ if and only if R ⊨ ¬ϕ. Applying the first case to ¬ϕ tells us that that G(N) ⊨ ¬ϕ
asymptotically almost surely. Consequently, G(N) ⊨ ϕ asymptotically almost never. This proves the zero-one

law for finite graphs. □

The zero-one law is a bittersweet theorem. On one hand, the argument is stunningly beautiful. We’re

proving a statement about finite graphs. To do so, we pass from the finite into the world of infinite graphs.

We show that the Rado graph is, in a certain sense, the limit of randomly chosen finite graphs. And then we

use the tools of mathematical logic to send truths about the Rado graph back to truths about finite graphs!

The proof boomerangs through infinity and back into the finite. The zero one law is a seemingly magical

property of finite graphs.

But there’s also a pessimistic view. The zero-one law proves that no first order property could be a good bet

in the finite random graph game. Earlier, we remarked that most natural, interesting structural properties

of graphs are not first order properties. The zero-one law should make this feeling visceral. The vocabulary

of the first order world is so impoverished that it can’t even make a statement that isn’t true of almost every

finite graph or almost no finite graph. It is a scathing indictment of the first order language.

7 More on compactness

We still owe you a proof of the compactness theorem. Compactness is more than the crux of the proof of

the zero-one law for graphs. It is arguably the fundamental theorem of model theory, and myriad theorems

follow from it. The majority of working mathematicians do not know this theorem, and that is simply a

travesty. However, we accept that the material in this section is a little tricker than what has come before,

and might not be to everyone’s tastes.

Before we prove the compactness theorem, we need two things: an alternative characterization of the com-

pactness theorem, and a certain construction that takes in some small graphs, and spits out a big one. Let’s

start with the alternative characterization.

Let T be a collection of first order sentences about graphs. We say that T is satisfiable if there is a graph

G such that G ⊨ ϕ for all ϕ ∈ T . Alternatively, we say that T is finitely satisfiable if for every finite subset

T0 ⊆ T , there is a graph G that satisfies T0. Clearly if T is satisfiable, then it is finitely satisfiable. But

what about the converse? Well...
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Lemma 27. Let T be a collection of first order sentences about graphs. The following are equivalent:

1. If ϕ is entailed by T , then there is a finite T0 ⊆ T such that ϕ is entailed by T0;

2. If T is finitely satisfiable, then T is satisfiable.

The first statement, of course, is the compactness theorem for graphs (Theorem 20). Let’s prove the lemma.

Proof: Suppose that the compactness theorem holds, and that T is not satisfiable. We will prove that T

is not finitely satisfiable. Let ⊥ denote any contradictory first order sentence. For example, we could take

⊥ := ∃x(x ̸= x). Since T is not satisfiable, it vacuously entails ⊥. By the compactness theorem, there is a

finite T0 ⊆ T such that T0 ⊨ ⊥. But since no graph G can satisfy the contradictory ⊥, it follows that T0 is

not satisfiable, and that T is not finitely satisfiable. This proves the first direction.

Conversely, suppose T is satisfiable whenever T is finitely satisfiable, and that ϕ is entailed by T . The

collection T ∪ {¬ϕ} cannot be satisfiable. By our assumption, this means that there must also be some

finite collection T0 ∪ {¬ϕ} ⊆ T ∪ {¬ϕ} which is also not satisfiable. It immediately follows (possibly by the

semantic principle of explosion if T0 itself is not satisfiable) that ϕ must be entailed by T0. This proves the

equivalence.

This alternative version of the compactness theorem further demonstrates the semantic nature of compact-

ness. While less useful for proving the zero-one law for graphs, this version of compactness is, in some sense,

what’s really going on under the hood.

Now it’s time for a weird construction on graphs. Some parts of this are going to feel somewhat miraculous

unless you’re well acquainted with ultrafilters. Let I be a (possibly infinite) set, and let U be a collection of

subsets of I with the following properties:

1. (non-trivial) ∅ ̸∈ U ;

2. (monotone) If A ∈ U and B ⊇ A, then B ∈ U ;

3. (finite intersection) If A,B ∈ U , then the intersection A ∩B ∈ U ;

4. (maximal) For every A ⊆ I, either A ∈ U or its complement (I −A) ∈ U .

Now for each i ∈ I, fix a graph Gi. We fix a new graph,
∏

U Gi, according to the following specifications.

A vertex v ∈
∏

U Gi is a choice of a vertex vi ∈ Gi for each i ∈ I. That is, v = {vi ∈ Gi}i∈I . We say two

vertices v = {vi}i∈I and w = {wi}i∈I are equal if and only if {i ∈ I : vi = wi} ∈ U . Formally, we need to

mod out by this relation, but let’s not get overburdened with notation so late in this chapter. Similarly, we

have an edge v ∼ w in
∏

U Gi if and only if {i ∈ I : vi ∼ wi} ∈ U .

Since ∼ is symmetric and antireflexive on each underlying graph Gi, we get a valid graph structure. This

graph is called the ultraproduct of the graphs {Gi}i∈I with respect to the ultrafilter U . We care about

this construction because it has the following important property:

Proposition 28. Let ϕ be a first order property of a graph. If {i ∈ I : Gi ⊨ ϕ} ∈ U , then
∏

U Gi ⊨ ϕ.
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This can be proven by simply following your nose. The first order property ϕ is ultimately made up from

appeals to the equality and adjacency relations, plus logical connectives and quantifiers. We specifically

chose for
∏

U Gi ⊨ ϕ to have equalities and edges based on having the equality/edge on a collection of indices

in U . Since {i ∈ I : Gi ⊨ ϕ} ∈ U , the requisite equalities and adjacencies are guaranteed to hold.

Finally, we’re equipped to prove the compactness theorem for graphs.

Proof of the compactness theorem for graphs: Let T be a finitely satisfiable collection of first order

properties of graphs. By Lemma 27, to prove compactness, it will suffice to show that T is satisfiable. To

that end, let F denote the collection of all non-empty finite subsets of properties from T . For each T0 ∈ F ,

let T ∗
0 denote the collection of all finite collections of properties in T that extend T0. That is,

T ∗
0 := {S0 ∈ F : T0 ⊆ S0}.

Consider the set U0 := {T ∗
0 : T0 ∈ F}. Is this an ultrafilter on F? Not quite, but it can be extended

to one using some set theoretic nonsense. It’s quite easy to see that U0 is closed under intersections, since

T ∗
0 ∩R∗

0 = (T0 ∪R0)
∗ for all T0, R0 ∈ F . That’s all it takes to ensure that there is an ultrafilter U extending

U0.

We assumed that T is finitely satisfiable. For each T0 ∈ F , there is a graph GT0
⊨ F . Now we take the

ultraproduct G :=
∏

U GF . We claim that G satisfies the theory T . Indeed, for any ϕ ∈ T , consider the set

{ϕ}∗ ∈ U . For every F ∈ {ϕ}∗, we have that ϕ ∈ F , and thus GF ⊨ ϕ. By Proposition 28, G ⊨ ϕ. □

Now that is a purely semantic proof of compactness.
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